


Mastering JavaScript  
High Performance

Master the art of building, deploying, and optimizing  
faster web applications with JavaScript

Chad R. Adams

BIRMINGHAM - MUMBAI



Mastering JavaScript High Performance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1250315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-729-6

www.packtpub.com

www.packtpub.com


Credits

Author
Chad R. Adams 

Reviewers
Yaroslav Bigus

Andrea Chiarelli

Vishal Rajpal

Commissioning Editor
Ashwin Nair

Acquisition Editor
Owen Roberts

Content Development Editor
Parita Khedekar

Technical Editor
Anushree Arun Tendulkar

Copy Editors
Hiral Bhat

Vikrant Phadke

Stuti Srivastava

Project Coordinator
Milton Dsouza

Proofreaders
Stephen Copestake

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa



About the Author

Chad R. Adams is a mobile frontend architect, currently working at Intouch 
Solutions, where he looks at creative ways of building HTML5-driven content 
and native iOS, Android / Windows Runtime applications. He lives in Raymore, 
Missouri, with his wife, Heather, and son, Leo.

In the past, Chad worked as a web developer for large websites, such as MSN.com,  
Ford.ca, Xbox.com, WindowsPhone.com, and Copia.com. He also speaks at 
developer conferences and groups in the Kansas City area on HTML5 and mobile 
development and is the author of Learning Python Data Visualization, Packt Publishing.

You can contact Chad on LinkedIn (http://www.linkedin.com/in/chadradams), 
Twitter (@chadradams), or his website (http://chadradams.com).

http://www.linkedin.com/in/chadradams
http://chadradams.com
http://www.msn.com/en-in/
http://www.ford.ca/
http://www.xbox.com/en-US/
http://www.windowsphone.com/en-us
http://copia.com/


About the Reviewers

Yaroslav Bigus is an expert in building cross-platform web and mobile 
applications. He has over 5 years' experience in development and has worked for 
companies in Leeds and New York. He has used the .NET Framework stack to 
develop backend systems, JavaScript, AngularJS, jQuery, Underscore for frontends, 
and Xamarin for mobile devices.

Yaroslav is working for an Israeli start-up called Tangiblee. He has reviewed Xamarin 
Mobile Application Development for iOS, Packt Publishing, written by Paul F. Johnson; 
iOS Development with Xamarin CookBook, Packt Publishing, written by Dimitris 
Tavlikos; and Learning JavaScript Data Structures and Algorithms, Packt Publishing, 
written by Loiane Groner.

I am thankful to my friends and family for their support and love.

Andrea Chiarelli has over 20 years' experience as a software engineer and 
technical writer. In his professional career, he has used various technologies for the 
projects he was involved in, from C#, JavaScript, and ASP.NET to AngularJS, REST, 
and PhoneGap/Cordova.

Andrea has contributed to many online and offline magazines, such as Computer 
Programming and ASP Today, and coauthored a few books published by Wrox Press.

Currently, Andrea is a senior software engineer at the Italian office of Apparound, 
a mobile software company founded in the heart of Silicon Valley. He is a regular 
contributor to http://www.HTML.it, an Italian online magazine focused on web 
technologies.

http://www.HTML.it


Vishal Rajpal is an experienced software engineer who started developing 
professional software applications in 2011. He has worked primarily on Java, 
Javascript, and multiplatform mobile application development, including  
PhoneGap and Titanium.

Vishal is pursuing his master's degree in computer science from Northeastern 
University, Seattle, and has worked on C, Java, and JavaScript. He lives in Seattle and 
can be contacted at vishalarajpal@gmail.com. You can also read more about his 
work at https://github.com/vishalrajpal/ and http://www.vishal-rajpal.
blogspot.in.

Vishal has also worked on books by Packt Publishing, such as PhoneGap 3.x Mobile 
Application Development HOTSHOT and Learning Javascript, Data Structures,  
and Algorithms.

https://github.com/vishalrajpal/
http://www.vishal-rajpal.blogspot.in
http://www.vishal-rajpal.blogspot.in


www.PacktPub.com

Support files, eBooks, discount offers, 
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com




[ i ]

Table of Contents
Preface	 v
Chapter 1: The Need for Speed	 1

Weren't websites always fast?	 1
Getting faster	 3
Selecting an effective editor	 3

Integrated Development Environments	 4
Mid-range editors	 8
Lightweight editors	 10
Cloud-based editors	 12

Summary	 15
Chapter 2: Increasing Code Performance with JSLint	 17

Checking the JavaScript code performance	 17
About the console time API	 18
When to use console.time	 21

What is JavaScript linting?	 22
About JSLint	 22
Using JSLint	 24
Reviewing errors	 26
Configuring messy white space	 27
Understanding the use strict statement	 30
Using console in JSLint	 32

Summary	 34
Chapter 3: Understanding JavaScript Build Systems	 35

What is a build system?	 35
Compiling code by example	 36
Error-checking in a JavaScript build system	 37
Adding optimization beyond coding standards	 38



Table of Contents

[ ii ]

Creating a build system from scratch using Gulp.js	 38
Node.js	 39

Setting up our build system	 47
About Grunt.js and Gulp.js	 47

Grunt Task Runner	 48
About Gulp	 48

Integrating JSLint into Gulp	 53
Testing our example file	 54
Creating a distribution	 56

Summary	 58
Chapter 4: Detecting Performance	 59

Web Inspectors in general	 59
The Safari Web Inspector	 60
Firefox Developer tools	 60
Internet Explorer developer tools	 61
Chrome's Developer tools	 62

Getting familiar with Chrome's Developer tools	 64
Summary	 82

Chapter 5: Operators, Loops, and Timers	 83
Operators	 84

The comparison operator	 84
Is strict faster?	 84

Loops	 86
How loops affect performance	 86
The reverse loop performance myth	 89

Timers	 92
What are timers and how do they affect performance?	 93

Working around single-threading	 94
Closing the loop	 96

Summary	 96
Chapter 6: Constructors, Prototypes, and Arrays	 97

Building with constructors and instance functions	 98
A quick word	 98
The care and feeding of function names	 98
Understanding instances	 101

Creating instances with 'new'	 101
Alternate constructor functions using prototypes	 106

Understanding prototypes in terms of memory	 106
Which is faster, a prototype or a constructor function?	 107



Table of Contents

[ iii ]

Array performance	 108
Optimizing array searches	 109

Summary	 112
Chapter 7: Hands off the DOM	 113

Why worry about the DOM?	 113
Don't we need an MV-whatever library?	 114
Creating new objects using the createElement function	 115

Working around the createElement function	 115
Working with the createElement function	 116
When to use the createElement function?	 120

Animating elements	 120
Animating the old-fashioned way	 120
Animating using CSS3	 122
An unfair performance advantage	 124

Understanding paint events	 126
How to check for paint events?	 126
Testing paint events	 128

Pesky mouse scrolling events	 129
Summary	 132

Chapter 8: Web Workers and Promises	 133
Understanding the limitations first	 133
Web workers	 134

Testing workers with a local server	 140
Promises	 142

Testing a true asynchronous promise	 144
Summary	 147

Chapter 9: Optimizing JavaScript for iOS Hybrid Apps	 149
Getting ready for iOS development	 149
iOS hybrid development	 150

Setting up a simple iOS hybrid app	 153
Using Safari Web Inspector for JavaScript performance	 158
Comparing UIWebView with Mobile Safari	 161
Common ways to improve hybrid performance	 163
The WKWebView framework	 166

Summary	 167



Table of Contents

[ iv ]

Chapter 10: Application Performance Testing	 169
What is unit testing in JavaScript?	 170
Unit testing with Jasmine	 170

Installation and configuration	 171
Reviewing the project code base	 173
Reviewing an application's spec for writing tests	 175
Writing tests using Jasmine	 177
Fixing our code	 179

Summary	 182
Index	 183



[ v ]

Preface
Welcome to Mastering JavaScript High Performance. In this book, we have covered 
JavaScript performance in a way that helps any JavaScript developer, whether they 
are new to the language or are experienced veterans. This book covers common 
performance bottlenecks, how to look for performance issues within code, and how 
to correct them easily.

We also review modern ways of optimizing our JavaScript code not just by relying 
on sheer knowledge of JavaScript, but by using tools to help optimize code for us. 
These tools include Gulp and Node.js, which help create great performing builds, 
and Jasmine, a JavaScript unit-testing framework that helps discover application 
flow issues in JavaScript. We also debug a hybrid app using Apple Xcode  
debugging tools for HTML and JavaScript.

What this book covers
Chapter 1, The Need for Speed, explains the need for faster JavaScript, discusses why 
JavaScript code is traditionally slow, and shows the types of code editors that can 
help us write faster JavaScript, without changing our coding style.

Chapter 2, Increasing Code Performance with JSLint, explores performance  
fixes in JavaScript, and covers JSLint, a very good JavaScript validation  
and optimization tool.

Chapter 3, Understanding JavaScript Build Systems, teaches you JavaScript build 
systems and their advantages for JavaScript performance testing and deployment.

Chapter 4, Detecting Performance, covers Google's Development Tools options  
and contains a review of how to use a Web Inspector to improve our JavaScript's 
code performance.



Preface

[ vi ]

Chapter 5, Operators, Loops, and Timers, explains operators, loops, and timers in the 
JavaScript language and shows their effect on performance.

Chapter 6, Constructors, Prototypes, and Arrays, covers constructors, prototypes, and 
arrays in the JavaScript language and shows their effect on performance.

Chapter 7, Hands off the DOM, contains a review of the DOM in relation to writing 
high-performance JavaScript, and shows how to optimize our JavaScript to render 
our web applications visibly faster. We also take a look at JavaScript animation and 
test performance against modern CSS3 animation.

Chapter 8, Web Workers and Promises, demonstrates web workers and promises. This 
chapter also shows you how to use them, including their limitations.

Chapter 9, Optimizing JavaScript for iOS Hybrid Apps, covers optimizing JavaScript for 
mobile iOS web apps, (also known as hybrid apps). Also, we take a look at the Apple 
Web Inspector and see how to use it for iOS development.

Chapter 10, Application Performance Testing, introduces Jasmine, a JavaScript testing 
framework that allows us to unit-test our JavaScript code.

What you need for this book
For this book, you will need a basic understanding of JavaScript, how to write 
functions and variables in JavaScript, how to use basic web technologies such as 
HTML and CSS, as well as some basic debugging skills using a Web Inspector such 
as Chrome Developer tools or Firebug, to name a few.

You will need a text editor, preferably for HTML and JavaScript coding; the available 
choices are covered in Chapter 1, The Need for Speed. Choosing the editor and the 
admin rights to the system you're working on is up to you, and it also depends on 
your budget. Also, Chapter 9, Optimizing JavaScript for iOS Hybrid Apps, strictly  
covers JavaScript in iOS development; for that, you will need a copy of Xcode  
and an Intel-based Mac. If you don't have these, you can still read along but,  
ideally, most of this work is done with a Mac.

Who this book is for
This book is written for intermediate JavaScript developers. If you are experienced 
with unit-testing JavaScript and writing your own frameworks, and are able to 
understand what instance-based versus static-based is in JavaScript, this book  
may not be for you. Also, if you're very new to JavaScript—as in, "How do I use  
a function?"—I recommend looking for a beginner's JavaScript book as well.



Preface

[ vii ]

However, if you've been into JavaScript for a while but are new to node-style 
performance testing, grunt or gulp project deployments, and unit-testing in 
JavaScript, or if you want to know more on how to write JavaScript faster, or if 
you're just looking to stop your code base from lagging behind without reworking 
your coding style, you are reading the right book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and 
explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To 
solve this issue, modern browsers have implemented new console functions called 
console.time and console.timeEnd."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <title>Jasmine Spec Runner v2.1.3</title>

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking 
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.



Preface

[ viii ]

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/7296OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/7296OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/7296OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Preface

[ ix ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.





[ 1 ]

The Need for Speed
In this chapter, we will learn about the need for executing JavaScript more rapidly, 
discuss why JavaScript code is traditionally slow, and see what kind of code editors 
can make us write faster JavaScript without changing our coding style.

Weren't websites always fast?
It seems not too long ago that website performance was important but not really 
required for most web sites. Even during the early days of the Web, it wasn't 
uncommon to have a really slow website—not because of connection speeds or 
server locations or which browser was used, no. In many cases, it was because the 
JavaScript used to render or create functionality for the pages was slow, very slow. 
Mostly, this was done because of a lack of minification tools and debuggers for 
JavaScript and a lack of knowledge of common JavaScript practices used today.

It was acceptable to the user that the page content was always slow, mainly because 
most users used a 56 K modem dialing up to their Internet Service Provider (ISP). 
The screech of beeps alerted the user to the connection process. Then, suddenly, 
the user was notified on their desktop that a connection had been made and then 
promptly opened the default web browser, depending on whether it was Internet 
Explorer 4 on Windows 95 or Netscape Navigator on a NeXTStep machine. The 
process was the same, as was the 2 minutes and 42 seconds it took to make a 
sandwich, waiting for HotBot to load.

As time moved on, users experienced Google, and then suddenly, page speed  
and load times seemed to grab more users' attention, though, even today, the plain 
Google theme on the main Google search site allows for speedy download of the 
full site's code. This was regardless of the Internet connection, a whole 1.36 seconds, 
as indicated by Safari's Timeline tool, shown in the following screenshot, giving us 
a clear indication of which resources were downloaded the fastest and which ones 
were the slowest.



The Need for Speed

[ 2 ]

Part of the reason for this was that the tools used in modern browsers today didn't 
exist for Internet Explorer or Netscape Navigator. In the early days of debugging, 
JavaScript results were debugged using JavaScript alerts, giving feedback to 
developers since the modern tools weren't around then. Also, developer tool sets 
today are much more advanced than just simple text editors.

In the following screenshot, we show you a website's download speed using Safari's 
Web Inspector:



Chapter 1

[ 3 ]

Getting faster
JavaScript, by nature, is a pretty easy language to build. One advantage that JavaScript 
has is that JavaScript is an interpreted language, which means that the code developed 
can still be deployed, and even work, according to a project's specifications.

Non-compiling code is both good and bad. Without the need to compile, a developer 
can quickly build a web page on a full web application in a very short amount of 
time. Also, it's very approachable for new- or intermediate-level developers in 
general, making staffing for web projects a bit easier.

Now, what's bad about not using a compiled language is that JavaScript doesn't 
compile and common errors tend to get missed by the developers involved; even  
if the code appears to be working, it may not be working efficiently. During the  
days where developer tools were most likely to be Notepad on Windows and a  
web browser, any errors were apparent to a user only, leaving out any issues  
with regard to code performance.

Today, we have various tool sets and build systems on top of our JavaScript skills. 
It's important to understand that having deep JavaScript knowledge can help you 
write and review better JavaScript code but, in many cases, we as developers are 
only human, and we make common mistakes that affect our JavaScript code—not 
adding spaces after a function's starting brackets or forgetting a semicolon at the  
end of our code statements, for example.

Choosing a proper editor for a given project that includes basic error-checking 
before writing a single line of JavaScript can improve the performance and quality 
of our codebase dramatically, without learning anything new in terms of the inner 
workings of JavaScript.

Selecting an effective editor
Picking a good editor can greatly affect your code quality as well as your productivity 
in terms of how fast a project can be coded. As noted in the preceding section, we 
developers are human, we make mistakes, and it's easy for us to write bad JavaScript, 
no matter what the skill level of the developer is. So, it's important for us to know 
when it is appropriate to use one editor over the other. To cover this, I will be breaking 
up different JavaScript code editors into one of four categories as follows:

•	 Integrated Development Environments
•	 Mid-range editors
•	 Lightweight editors
•	 Cloud-based editors



The Need for Speed

[ 4 ]

Each type of editor has its own strengths and weaknesses, and we will review  
when to use one over the other, starting with the biggest. The intent is to show  
when it's appropriate to move from a larger code editor to a smaller editor in  
terms of JavaScript development.

Integrated Development Environments
Integrated Development Environments (IDEs) are very high-end software tools that 
not only provide code editing, but also code-organization tools, built-in testing tools, 
code-optimization scripts, source-control integration, and usually deep code hinting 
and completion support.

The downside of using an IDE is that the IDE is designed to constantly check the 
code as the file is being updated while code is being written. This causes the editor 
to be sluggish and unresponsive at times and painful to use on slower systems. 
Typically, JavaScript developers tend to dislike the sluggishness of these IDEs and 
move on to other faster editors.

This can cause issues when large projects kick off, and users use an editor that is  
ill-suited to structure JavaScript in a proper manner. It's usually recommended that 
you start with an IDE and work down when a project only requires minor tweaks.

Some popular IDEs for JavaScript are discussed in the upcoming sections.

The Microsoft Visual Studio IDE
If any software is directly associated with the term "IDE", Visual Studio is one. 
Microsoft Visual Studio IDE can be seen in the following screenshot:



Chapter 1

[ 5 ]

It handles multiple languages, including HTML, CSS, and JavaScript, while handling 
other language such as C#, Visual Basic, Python, and so forth. In terms of JavaScript, 
Visual Studio will check deeply within a project's JavaScript code flow and look for 
minor errors that many lighter editors won't find.

For JavaScript developers, the Visual Studio Express Edition for Web should be 
powerful enough for any JavaScript projects.



The Need for Speed

[ 6 ]

JetBrain's WebStorm IDE
For the JavaScript developer not fond of ASP.NET and looking for a dedicated 
JavaScript IDE, and/or requiring a Mac or Linux solution, look any further than 
JetBrain's WebStorm IDE shown in the following screenshot:

This IDE is targeted at JavaScript development, and it handles any JavaScript 
technology you can throw at it: node, AngularJS, jQuery… the list goes on and on 
with WebStorm. It also has full code hinting and error checking support, similar to 
Visual Studio, and it has very strong source control support, including Git, SVN,  
and even Microsoft's Team Foundation Server.

Now sidebar on JetBrains, WebStorm is a lower-tier IDE when compared to IntelliJ 
IDEA, which is JetBrain's flagship editor for every language. The user interface of  
the IntelliJ IDEA editor can be seen in the following screenshot:



Chapter 1

[ 7 ]

Typically, IDEA is known best as a Java-focused IDE, but it includes the same tools 
as WebStorm plus many more. Like Visual Studio, it can handle multiple languages, 
but that comes at the cost of performance. For example, if we started working in 
both environments on a slower system, we might notice more lag on IDEA than 
WebStorm when working day-to-day on JavaScript projects.

Again, this is due to the large number of features the IDEs require to be running in 
the background to make our code better, which is more marked on IDEA; so, again, 
starting off in an IDE is great to build a well-structured code base early on, but as 
time progresses and we work repeatedly in a slow editor, we will need something 
faster with a good base already set up.

With that in mind, many developers who don't see performance issues with an IDE 
tend to stick with the IDE they've chosen; other developers, however, move on to 
editors such as the ones in the next section.



The Need for Speed

[ 8 ]

Mid-range editors
Mid-range editors work very well with projects already past the early phases of 
development or projects that are very small. An exception to using an IDE early  
on is small projects. These are typically content-management system-based sites, 
such as WordPress, Joomla, Drupal, and so on, where most of the JavaScript is 
written for the developer and tested already.

They are also useful for light code hinting, and some can connect to either a source 
repository or an FTP to push code up. The real differences between these and an 
IDE are the speed of the editor and the lack of code quality features. Many of these 
editors only look for glaringly obvious errors in the code, such as missing a semi 
colon in JavaScript. Nevertheless, they are very useful all-round editors.

Panic's Coda editor
Coda is a Mac-only editor, but it supports HTML, CSS, and JavaScript coding.  
The following screenshot shows you the user interface of Coda:



Chapter 1

[ 9 ]

It also has some support for Python and PHP, but it's not dedicated to running non-
web code on its own. It also features a manual validation checker of JavaScript rather 
than one that's continuous so, again, there's some support to improve your JavaScript 
and web code, but it does not always check for errors fully while you code.

The Microsoft WebMatrix editor
WebMatrix is Microsoft's lighter website editor in this mid-range category.  
It has Git and Team Foundation Server support as well as support for ASP.NET 
projects, PHP, and NodeJS. The user interface of WebMatrix can be seen in the 
following screenshot:

WebMatrix is an example of a mid-range editor where you may want to consider an 
editor's features when choosing which editor you want to use for your project.



The Need for Speed

[ 10 ]

For example, if you needed Mac support with Python, then Coda is a good fit, while 
WebMatrix gives a different set of features, including ASP.NET support. This is a 
common theme in mid-range editors, where many of them are really designed to 
do certain things and give just about the minimum support for a code base while 
keeping the editor as speedy as possible.

With any editors of this type, we can see that they allow us to connect to an existing 
project easily and perform some code-checking while working on a fairly fast editor.

Lightweight editors
There are times where we as JavaScript developers just don't care about the backend 
platform a project is using and only need a simple text editor to write a bit of 
JavaScript code or update an HTML file. This is where lightweight editors come in.

The Sublime Text editor
Sublime Text is a very popular, cross-platform, lightweight editor. Its user interface 
can be seen in the following screenshot:



Chapter 1

[ 11 ]

It is well known for its start-up and usage speeds as well as some basic editing 
features, such as language color hinting and basic code-hinting with multiple 
language support.

It also has its own package manager called Package Control, which allows you 
to augment Sublime Text to automate some common code-editing and compiling 
processes. Freshly downloaded, though, it's extremely lightweight and allows 
developers to add in common plugins required for their development workflow.

The Notepad++ editor
The user interface of the Notepad++ editor is shown in the following screenshot:

On Windows, a JavaScript editor that is exclusive to the Windows platform and 
that's actually an editor and not an IDE is Notepad++. Similar to Sublime Text, 
Notepad++ is mostly used as a text editor and has plugin support but doesn't  
use a package manager such as Sublime Text, so the application runs extremely  
fast even with plugin support. It also has code-hinting support for some project  
files, including JavaScript.



The Need for Speed

[ 12 ]

In the case of either of these editors, or any other lightweight editor, as they typically 
don't have code validation included, they make code updates easily and quickly with 
validation running in the background, at the risk of writing slow or broken code.

Cloud-based editors
Lastly, cloud- or web-based editors are the shiny new tools new to the web developer's 
tool belt. They allow a developer to work on a code base inside a browser either as a 
plugin to a web browser or purely online, and it allows a developer to work on any OS 
platform, Chrome OS, iPad, or Android operating systems that you might not consider 
writing JavaScript in!

The advantage of writing code in a browser is that the project code is hosted online, 
either in Git or simply in the editor's hosted service. Some plugin editors allow you 
to work from your computer's hard drive like any other editor but are written in 
HTML and JavaScript with a backend (such as Python, PHP, or ASP.NET) like any 
other website.

Typically, these editors fit inside the mid-range editor space in terms of features. 
However, some of them can offer very little in terms of features beyond being online 
without installing an editor to a computer, which is why they fall in this category. 
The upcoming sections give a few examples of popular cloud editors.

The Cloud9 editor
Cloud9 editor, available at http://c9.io/, is a general web application IDE but 
is a cloud app with HTML5, PHP, Node.js, Rails, Python/Django, and WordPress 
support. The following screenshot displays the user interface of the Cloud9 editor:

http://c9.io/


Chapter 1

[ 13 ]

It also allows you to clone from a Git URL or from a GitHub project, so you can 
choose to have your code hosted in Cloud9 or synced to your own Git repository.

Another feature of Cloud9 is virtual-machine support from the browser for iOS 
simulator testing as well as console support for Node.js — again, in a browser.



The Need for Speed

[ 14 ]

The Codenvy editor
Another online IDE—Codenvy—is available at http://codenvy.com/. Its user 
interface can be seen in the following screenshot:

This editor is pretty similar to Cloud9, but it hosts cloud service projects, such as 
Google's App Engine. It can also build apps for Android while having full JavaScript 
support for popular libraries in AngularJS or jQuery.

An issue with cloud editors is that, when JavaScript libraries are involved in a 
project, an online editor may not be able to recognize library-specific JavaScript  
or HTML tag conventions used, so it's important to consider features when  
selecting a cloud editor.

For cloud editors, you can see that they follow a mid-range editor feature-set but 
allow for quick connection and updates for existing projects.

http://codenvy.com/


Chapter 1

[ 15 ]

Summary
In this chapter, we looked at the history of JavaScript's performance and learned  
how it became a focus for developers and businesses. We also reviewed the four 
types of JavaScript code editors, and we now understand how to move away from 
large IDEs for brand new projects, working down to lightweight editors for small 
updates and changes.

In the next chapter, we will look at how we can keep our code's performance quality 
high when using a lightweight editor.





[ 17 ]

Increasing Code 
Performance with JSLint

In this chapter, we will learn about confirming performance fixes in JavaScript, and 
we will also learn about JSLint. There are two very good JavaScript validation and 
optimization tools, and we will learn how to use both and how to set the options to 
get the best code performance optimization results.

So, we are going to cover the following topics in this chapter:

•	 Checking the JavaScript code performance
•	 What is JavaScript linting?
•	 Using JSLint

Checking the JavaScript code 
performance
Before we can start talking about how to improve our JavaScript performance, we have 
to ask ourselves a hard question about what code improvements actually improve 
the JavaScript application speed. In the earlier days of JavaScript development, many 
performance improvements were mainly implemented based on known JavaScript 
coding standards, watching for global variables without the variable being declared, 
keeping the variable scope in line, and so on without much verification beyond 
anything visual inside a website.

Today, we have new APIs to take advantage of this problem and scope solutions for 
small parts of our code.



Increasing Code Performance with JSLint

[ 18 ]

About the console time API
To solve this issue, modern browsers implemented new console functions called 
console.time and console.timeEnd. What these two functions do is allow a 
developer to specify a label for the console.time and console.timeEnd functions, 
measure the amount of time a code block between the time and timeEnd instances 
would need to function, and finally, show the result in a console.

Let's take a look at how to use console.time() and console.timeEnd() in a 
working example. Here, in our 02_01.js example file, we have a simple code  
block creating 100 simple JavaScript objects using the new keyword inside a  
for loop, as shown in the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 2

[ 19 ]

As we can see on line 5, we call the console.time function and, inside as its 
parameters, we have the 100 objects in For Loop string label for our code block. 
We then add a NewObj object constructor on line 7. Following that, we have a simple 
JavaScript for loop on line 11 that creates 100 instances of the NewObj constructor, 
passing in the value from each instance from the for loop on line 13. Finally, on line 
16, we end the time block with the console.timeEnd function, using the same label 
we declared at the start of the time instance.

Let's try this code out in a browser; I'll be using Google Chrome for this, but any 
modern browser, such as the latest version of Firefox, Internet Explorer, or Safari, 
should be fine. We'll open about:blank in our browser's URL so that we can have  
a simple test environment to work in, and then we will open our Web Inspectors  
or browser debuggers, paste the code snippet into our console, and press Enter.  
Here are the results that are displayed in my browser:



Increasing Code Performance with JSLint

[ 20 ]

If we take a look just before the undefined line in the output, we can see the label 
defined in the console.time function output: 100 objects in For loop: 0.274ms. 
So, with some hard data, we can visually see that the block of code we wrote takes the 
0.274ms JavaScript interpreter to process that bit of code. Great, but what happens if 
we tweak our code and make it more efficient, say, by changing our for loop to stop  
at 10 rather than 100. Well, here's an updated code sample for the 02_02.js file in  
our example files:

Here, we changed the amount the for loop iterates on lines 5, 11, 12, and 16; let's run 
this code and see what happens as shown in the following screenshot:



Chapter 2

[ 21 ]

We can now see that dropping our for loop to 10 iterations versus 100 iterations 
drops our processing time from 0.274ms to 0.099ms. We can visualize scaling this 
up to much larger applications knowing that this performance-testing API can be 
very helpful in evaluating performance in our JavaScript code.

When to use console.time
The console.time() method allows developers to have an understanding of what 
code affects performance and what doesn't. The console.time() method delivers 
results based on not only what browser you're using, but also what operating system 
and system hardware you're using. If you ran the preceding code snippets, they 
should be near the values given in this book but more than likely not the same by  
a small variation.



Increasing Code Performance with JSLint

[ 22 ]

So, when using console.time(), think of them as a guide but not as a hard result. 
As we work through the book using the console.time() method, there may be 
some variation between the results listed here and what you experience depending 
on your work environment. What should be consistent is that you will be seeing 
performance improvements in general when using the console.time() method.

Now with our performance-testing knowledge in hand, we will start learning about 
common performance bottlenecks in JavaScript but, before we dig deep into these 
concepts, we are going to look at tools that help with the evaluation process.

What is JavaScript linting?
Before we talk about JSLint, we need to discuss linters in general, what they are, and 
how they influence JavaScript performance. A lint is, simply put, a code-validation 
checker. It allows a developer to point to a code file and check for errors or potential 
issues ranging from spacing issues to pure code errors.

Linters typically receive the contents of a file and build a source tree. In the case of 
JavaScript, this can be objects such as global variables, functions, prototypes, arrays, 
and so forth. After the tree is created, analyzers will take parts of the source tree and 
report anything an analyzer that was written would flag. Lastly, any rule readers or 
parameters flagged before running the linter will look for any options to ignore and 
generate a final report.

Common rule readers for JavaScript options would be settings such as checking for 
EcmaScript 3, allowing white space, allowing the continue keyword, allowing non-
strict conditionals for the if statements, and so on.

About JSLint
JSLint is a JavaScript code analysis tool that was written in JavaScript by Douglas 
Crockford, who also helped in popularizing JSON in software development. JSLint 
can be used in many ways, as mentioned in Chapter 1, The Need for Speed. Many IDEs 
have features beyond just editing code; some of these features include things such as 
error checking and, in some cases, the IDEs use a version of JSLint.



Chapter 2

[ 23 ]

For this chapter we will discuss how to use JSLint using the official JSLint online site 
at http://www.jslint.com/, as shown in the following screenshot:

http://www.jslint.com/


Increasing Code Performance with JSLint

[ 24 ]

Using JSLint
JSLint is very easy to use with a site; all you need is some JavaScript and to paste 
your code file into JSLint. Let's try a small code sample, as shown in the following 
screenshot and that you can reference in the example file as the 02_03.js file:



Chapter 2

[ 25 ]

Now, let's paste our code into the input box present at http://www.JSLint.com and 
click on the JSLint button. Immediately, we should see a list of errors showing up on 
the site below the JSLint button, as shown in the following screenshot:

http://www.JSLint.com


Increasing Code Performance with JSLint

[ 26 ]

See also these remaining errors:

Reviewing errors
Before looking at these errors, let's look at the bottom of the error list; we will see an 
error: Stopping. (52% scanned). This is a warning that JSLint found so many errors 
that the analyzer tools in JSLint simply gave up reviewing errors. It's important to keep 
this error in mind when reviewing JSLint messages; as only 52 percent of the code was 
reviewed, additional errors may appear once we fix them.



Chapter 2

[ 27 ]

Okay, now that we've understood JSLint's limitation, let's fix these errors. When 
working with JSlint, work through the error list top down, so error 1 is Unexpected 
character '(space)'.. Well, what does that mean? To explain, JSLint is very picky 
about the way spacing should be in JavaScript files. A JavaScript interpreter assumes 
a specific spacing within certain JavaScript objects and variables.

This empty space is displayed before any other errors in the code appear, so we can 
assume that this error comes before any code appears and, in fact, that is the case. If 
we look at the 02_03.js file, actually line 4 is causing the issue, which is the space 
between the comment header and our my_count global variable.

Configuring messy white space
We can address our spacing errors in two ways: we can review each space and 
correct it line by line or, if we are using a minifier, we can tell JSLint to ignore empty 
and unnecessary lines. To do this, we will navigate to Options on the bottom of the 
page, and we will set the messy white space option to true. This will tell JSLint to 
ignore any spacing issues that aren't directly associated with code interpretation,  
as indicated in the following screenshot:



Increasing Code Performance with JSLint

[ 28 ]

Once this is set to true, we will see a new panel appear under options, called JSLint 
Directives. The JSLint Directives panel provides a quick list of the parameters JSLint 
will pass in when reviewing code, before executing the validator. Seeing directives 
here is very helpful if we're trying to copy-and-paste this configuration in another 
instance of JSLint, say a build system… but more on this soon.

With messy white space ignored, we can rerun JSLint on our code and see an 
updated list of errors, shown as follows:

Now, we check how much of the code JSLint detected. This time, if we look at the 
last error, we can see that JSLint stopped at 84%, which is much better than before, 
but we can do better here. Let's take a look at the first new error. At the top of the 
error list, we can see the error stating 'my_count' was used before it was 
defined. This is line 5, character 1 in the Errors panel.



Chapter 2

[ 29 ]

This indicates that we forgot to declare var before our my_count variable, so let's 
update it as shown in the following screenshot, adding var to my_count on line 
5, and then let's rerun JSLint. You can reference the update in the exercise files as 
02_03_01.js:

Next, after rerunning JSLint with our updated code, let's look at the next two lines. 
The first line states Unexpected TODO comment. This is pretty straightforward; in 
JSLint, we can specify allowing TODO comments in our JavaScript code, which is 
pretty handy! Let's allow this as we are just improving our code in JSLint and are  
not completing the file for now. Take a look at the options I've highlighted, where 
you can set TODO to be allowed or not:

We will now set TODO comments in the Options panel to true; next, let's take a 
look at the remaining errors.



Increasing Code Performance with JSLint

[ 30 ]

Understanding the use strict statement
So, here's what's now left in our JSLint error list, shown in the following screenshot. 
The next error we see is Missing 'use strict' statement.. Now, if you haven't 
seen the use strict statement in JavaScript previously, I'll explain:

The use strict statement is a hint to a browser to enable strict mode when reading 
JavaScript at runtime. This allows errors typically displayed as warnings to return as 
errors in our browser. One other advantage to using the use strict statement in our 
code is that it allows the JavaScript interpreter to run faster as it assumes the code has 
been optimized and bug-tested properly. This tells the JavaScript interpreter that code 
here has been written properly and the interpreter doesn't have to run as many checks 
on the code at runtime.

Using the use strict statement isn't hard to implement, and we can add it before 
any code inside every function like this:



Chapter 2

[ 31 ]

We can also include it globally in the full JavaScript file by adding it above the first 
line of the code, as shown in the following screenshot:

One thing to know about the use strict statement with regard to JSLint is that 
JSLint prefers to set the use strict statement at the function level (shown previously 
in the first use strict example). The idea is that it properly sets the scope for the 
use strict statement as per the function for better code testing and analyzing, but 
both are correct in terms of JavaScript.

Let's finish up these remaining issues under our TODO comment; on line 9, we will 
add "use strict" followed by adding a semicolon to what would now be line 
10 after our console.log statement. With that finished, it should resemble the 
following screenshot:



Increasing Code Performance with JSLint

[ 32 ]

Using console in JSLint
We are nearly finished with this code. However, on executing it we get a list of errors 
in which the first line, which may seem odd, states: 'console' was used before 
it was defined. in the Errors panel. JSLint can validate JavaScript that may not be 
designed for a browser; this could be a Node.js script, for example. To enable browser 
objects, we need to enable the console, alert, … and a browser options in our JSLint 
Options panel; we can set these to true, as shown in the following screenshot:

With these enabled, lets rerun the script; the remaining errors should be 
straightforward. The first error complains that we should Combine this with the 
previous 'var' statement.. We can remove the number1 and number2 variables 
and simply assign my_count = 42;.

Lastly, our if statement could use some work. First, JSLint complains that we are 
using a loose conditional (a double equals for comparison) in our if statement. If 
we use triple equals for comparison, we compare the type as well. By doing this, 
our code will run the comparison faster than before. Also, the if statement doesn't 
include brackets around the conditional code, and this can slow the interpreter 
down, so let's add them. Our final code should resemble the following screenshot:



Chapter 2

[ 33 ]

Now let's re-run our finalized code thru JSLint and we should see a screen like this:

We can see that we now have no errors in JSLint, and we can also see a Function 
Report panel, indicating a variable scope as a note of what variables are global to the 
file and what variables and functions exist inside a function, including our anonymous 
function example.

Before we wrap up this chapter, let's try the console.time method on both our 
2_03_01.js and 02_03_03.js code files with the console.time function wrapped 
around. The time I get on my end for the former is 0.441ms, and the optimized code 
with JSLint is 0.211ms! Not bad; double the performance!



Increasing Code Performance with JSLint

[ 34 ]

Summary
In this chapter, we learned the basics of the console.time and console.timeEnd 
methods, and we also learned about JSLint and how it can improve our JavaScript 
performance. In the next chapter, we will take a quick look at JSLint and get our 
hands dirty by integrating it into a build system!



[ 35 ]

Understanding JavaScript 
Build Systems

In this chapter, we will learn about JavaScript build systems and their advantages for 
JavaScript performance testing and deployment. We will also incorporate JavaScript 
code testing into our build system using the knowledge we gained about JSLint in 
the last chapter.

In short, we are going to cover the following topics in this chapter:

•	 What is a build system?
•	 Setting up our build system
•	 Creating a distribution

What is a build system?
Typically, a build system is an automated process that assists developers writing 
clean optimized code. We may think that such a thing would be standard across 
all programming languages. Now, compiled languages usually have a compiler; a 
compiler takes a program written by following a language specification, and creates 
output code compatible with the target machine.



Understanding JavaScript Build Systems

[ 36 ]

Compiling code by example
Compilers typically work through a spec when a code file is sent for processing. To 
keep a compiler from crashing from bad code, a compiler is set up with many error 
checkers that stop the compiler beforehand and display an alert, thus blocking the 
compiling process. Now some IDEs allow you to see some of your mistakes before 
attempting to run your code. The following screenshot shows a simple Xcode Swift 
file being checked while editing:

Without getting too technical in iOS development, we can see that, on assigning 
a constant variable in Swift, if I attempt to change the variable as in the preceding 
screenshot, my code flags an error.

Now if I change the let authors_name constant to a dynamic var variable (just  
like in JavaScript), the error itself corrects, as shown in the following screenshot,  
and removes the error displayed in the IDE:



Chapter 3

[ 37 ]

Error-checking in a JavaScript build system
In the past, HTML editors for JavaScript and HTML content, such as Dreamweaver, 
have done this since the creation of early web code editors.

The difference between what's done in Xcode for a compiled language and what's 
done in a JavaScript IDE is slightly different. With a compiled language, an error 
must be fixed before a code file can run; this is usually considered as static type 
checking. JavaScript, however, can run with an error, even when overridden with  
a try-catch block. Simply put, as stated in Chapter 2, Increasing Code Performance 
with JSLint, JavaScript is an interpreted language, and the only language that is  
really tested for errors at run time.

With that in mind, how do editors such as Dreamweaver, WebStorm, or Visual 
Studio check for errors then? Well, if you remember in Chapter 2, Increasing Code 
Performance with JSLint, we saw how linting tools provide feedback on potential or 
verifiable bugs in JavaScript code; this returns a list of errors.

With an IDE, the editor is coded keeping this in mind and takes each error to display 
it with the associated line and column in the JavaScript file.



Understanding JavaScript Build Systems

[ 38 ]

So, to make a build system, we will need to incorporate this sort of error checking 
just like using http://jslint.com/ but in a more automated fashion. This allows 
lightweight editors to use the same checking tools that are used in more expensive 
and heavier IDEs.

Adding optimization beyond coding 
standards
Like our Xcode example earlier in the chapter, we want our final output to be 
optimized for our project; to do this, we will add minification to our build system, 
allowing us to keep a developer version or source project to be saved in a directory 
with a distribution in another directory. Simply put, minification allows us to 
compress our JavaScript code causing our web applications to download faster, and 
run more efficiently.

This can be helpful if we are using source control to maintain our project, allowing 
us to quickly grab a stable distribution that's optimized, but not easily debuggable, 
and debug it with our source directory's files.

Now as JavaScript developers, we can even add other minification build options 
that we may need for the project, such as an image optimizer for our  project's image 
directory, or minify our CSS file and add information comment blocks on top of our 
JavaScript files. By compressing our JavaScript, the JavaScript interpreter doesn't 
have to guess the distance in whitespace in our code, which creates more efficient 
and better-performing code.

Creating a build system from scratch using 
Gulp.js
Now that we've introduced build systems and the reason for their use, let's go ahead 
and create a simple build system. Our goal is to create a distribution build from our 
source directory, a copy that's optimized and ready for production. We will also 
integrate JSLint, as we learned from the last chapter, to check our code as we create 
builds for any potential issues that might have been missed during development.

http://jslint.com/


Chapter 3

[ 39 ]

In this chapter, we are going create a build system to test our JavaScript project. 
We will also incorporate minification into our build system, and copy files to our 
build directory. So when we are ready to deploy, our code base is already set to be 
deployed.

Before setting off on this project, we will need to understand a few technologies 
specific to JavaScript, particularly the build system that we will want to take into 
account; we will especially deal with technologies such as Node.js, NPM, Grunt, and 
Gulp. If you have only heard about these before, or maybe have tinkered with some 
of these and never really got further than that, don't worry; we will go over each of 
these one-by-one and understand their advantages and disadvantages.

Node.js
Node.js is a JavaScript interpreter for your operating system. For JavaScript 
developers, the concept of JavaScript code working as a backend code base like  
Java or C# may seem odd, but has been shown to work in new creative ways.  
For example, the community of Node.js developers has created plugins to create 
custom-built, JavaScript-based applications for the desktop.

This puts JavaScript in a very new place. When traditional application developers 
complain about JavaScript, one of the main complaints is that JavaScript cannot read 
or write files to a hard drive, which is usually a very basic feature for a programming 
language. Node.js allows custom objects to interact with the operating system. These 
include objects such as FS or FileSystem that allow for reading and writing files and 
work pretty much like a console in a web browser.



Understanding JavaScript Build Systems

[ 40 ]

For this project, we won't discuss Node.js in depth (that's another book), but we will 
be installing Node.js into our OS so that we can run and test our build system. So 
let's download Node.js and get started. First, navigate to http://nodejs.org/ and 
click the green INSTALL button, as shown in the following screenshot:

Node.js is cross-platform, and so most of these instructions should work for you. 
I'll be using a Mac with OS X for this installation's introduction. For most platforms, 
Node.js will come with either a .pkg or .exe install wizard, as shown in the 
following screenshot:

http://nodejs.org/


Chapter 3

[ 41 ]

From here, follow the wizard, accept the user licenses and install for all users. By 
installing for all users, we allow Node.js to have full system access which we do 
want, since some plugins for Node.js may require certain features that are not 
accessible by a single user or non-administrator.

When you've finished installing Node.js, keep in mind the paths set by the installer; 
if you want to remove Node.js in future, check out the following screenshot to see 
where the installer has added Node.js:

Testing a Node.js installation
To ensure that Node.js is properly installed, we want to check two things. The first 
thing is to check whether Node.js works in the Terminal. To validate the installation, 
we will check the current version of Node.js that's installed.



Understanding JavaScript Build Systems

[ 42 ]

First, let's open Terminal (or Command Prompt, if using Windows), and insert the 
node --version command as shown in the following screenshot, and press Enter:

If successful, we should see the version number (in my case, it's v0.10.32; your 
version may be greater than my version number when attempting this) as shown  
on the next line in the Terminal in the following screenshot:



Chapter 3

[ 43 ]

Testing Node Package Manager's installation
Great job! Now, the next thing to be checked for a full installation is whether Node 
Package Manager is installed as well. Before testing, let me explain what Node 
Package Manager is, especially to those who might not know what it is and why  
we need it.

About Node Package Manager
The Node Package Manager (NPM) connects to the NPM registry, an online 
repository of software libraries for Node.js. By using NPM, we can quickly set up a 
JavaScript build system and install libraries for our HTML-based JavaScript projects 
automatically, which allows us to ensure that our JavaScript libraries are up-to-date 
with the latest version of each library.

NPM also has a website you can use to research various JavaScript libraries at 
https://www.npmjs.org. This is also shown in the following screenshot:

https://www.npmjs.org


Understanding JavaScript Build Systems

[ 44 ]

Checking NPM installation in the Terminal
Now, to check our installation of NPM, we are going to call NPM directly, which 
should return a help directory for the NPM module installed. To do this, simply 
open the Terminal and insert the npm command. Now, we should see our Terminal 
window populating with a bunch of NPM help documentation and sample terminal 
commands, as shown in the following screenshot:

The basics of using NPM
Using NPM is a pretty easy process to learn. The first thing that we need to do before 
setting up NPM for a project is to create a project root directory; I'm going to mark 
this as npm_01 for the first project, but you can name your root as whatever you 
would like. Now, we are going to open Terminal and change our bash directory to 
match the path to the directory I created.



Chapter 3

[ 45 ]

To change your working directory in the Terminal, the command is Change 
Directory or cd. Using cd is pretty easy; simply type the following command:

cd [~/path/to/project_dir]

A few things to note here are that the Terminal always points to your user home 
directory on Mac and Linux, and the tilda key (or ~) is a shortcut to point to your 
path. For example, if your folder is in your documents directory under your 
username, an example path using cd would be cd ~/Documents/[your_project_
path].

If the Terminal is getting cluttered with information, you can use the 
"clear" command to clean your terminal's contents, without changing 
your directory.

Installing jQuery with NPM
A common JavaScript library is jQuery, a very popular library on NPM. We can even 
check out its repository information on npmjs.org, found at https://www.npmjs.
org/package/jquery.

https://www.npmjs.org/package/jquery
https://www.npmjs.org/package/jquery
https://www.npmjs.com/


Understanding JavaScript Build Systems

[ 46 ]

If we look at this page, we can see a command for our terminal, npm install 
jQuery. So, let's type that into our terminal and press Enter to see what happens.

If you're a Mac or Linux user, you can drag-and-drop a folder into the 
Terminal, and it will auto-write the path of your folder for you after 
you type the cd command.

In the Terminal, it looks like some files were downloaded, as indicated in the 
following screenshot:

Now, if we open our project directory, we can see that a new folder named  
node_modules has been created. Inside this folder, another folder is created named 
jquery. The contents of the jquery folder are shown in the following screenshot:



Chapter 3

[ 47 ]

Inside the jquery folder, there are some interesting files. We have a README.md (.md 
is short for markdown, a type of text format) file explaining jQuery.

The folder has two JSON files, one called bower.json and another called package.
json. The package.json file handles the NPM package information while the 
bower.json file handles any dependent packages and notifies NPM to include  
those as well on installation request.

If you're wondering what the bower.json file does, it's essentially another way to 
update source code from a repository. Like the NPM registry, the bower.json file 
uses its own; the difference is that it can use a JSON file in a project and update  
based on the setting stored in the JSON file.

Lastly, the most important two folders are the src folder (or source folder) and 
the dist folder (or distribution folder). This file structure is a common convention 
for NPM, where the source of a project with debug information is saved in the src 
folder, while the final tested output lives in the dist folder.

Since we aren't debugging the source for jQuery, all we really need to worry about  
is the dist folder, where we can find the jquery.js file and the jquery.min.js 
file—the same library files typically used in jQuery projects. It's important to know 
this for our build systems as we will want to copy those into the distribution folder 
for our build system.

Setting up our build system
Now that we have learned the basics of Node.js and NPM, let's actually build a build 
system. We will want to point our Terminal to our project's root directory, and then 
we will want to install our build system (also called Task Runner).

About Grunt.js and Gulp.js
Node.js build systems fall within two major build system libraries: Grunt and Gulp. 
Grunt is, in many cases, the default build system for Node.js projects.



Understanding JavaScript Build Systems

[ 48 ]

Grunt Task Runner
Grunt was designed originally for automating tasks in JavaScript and, web 
development and due to its availability, many developers have created plugins; you 
can view them in Grunt's plugin repository shown in the following screenshot:

About Gulp
Gulp is another build system for Node.js; the advantage of using Gulp is that it's 
asynchronous, and typically runs automated tasks much faster than Grunt. Since this 
book is all about performance, we will use Gulp for our build system as an example. 
That doesn't mean that Grunt is bad; it can create built systems as well as Gulp.js, but 
it may not be as fast as Gulp.



Chapter 3

[ 49 ]

Like Grunt, Gulp also has a plugin reference page found at http://gulpjs.com/
plugins/, and shown in the following screenshot:

Installing Gulp
To install Gulp, we will open our terminal and type the following into our prompt:

sudo npm install --global gulp

http://gulpjs.com/plugins/
http://gulpjs.com/plugins/


Understanding JavaScript Build Systems

[ 50 ]

This will install Gulp globally to our Node.js and NPM resource path. If we are 
running a Windows system, sudo isn't in Window's Shell, so we will need to run the 
Command Prompt as Administrator. Now, if everything is successful, we should 
see a bunch of URL requests for files, and our Terminal should return to the prompt 
shown in the following screenshot:

With our global ("global" meaning installed for all folders in our system) 
dependencies for Gulp installed, we can install our developer dependencies, which 
allow our build system to be more portable when uploading to a source control. 
Essentially, these dependencies need to be in our root project file to enable our  
build system to run in our project directory.



Chapter 3

[ 51 ]

We can do it by typing the following code into our Terminal (again, sudo for  
Mac/Linux users and Run as Administrator for Windows users):

sudo npm install --save-dev gulp

If successful, your bash prompt should show again, pulling many URL sources and 
installing them to your project's node_modules directory under gulp as shown in the 
following screenshot:

Creating a gulpfile
A gulpfile is a file that Gulp checks for to run a list of tasks at the root of our 
project directory. To create one, we will create a simple JavaScript file called 
gulpfile.js (note the case of the filename). Inside the file we are going to  
reference Gulp as a variable and create a default task, called Default.



Understanding JavaScript Build Systems

[ 52 ]

This is the main task we need to run for every gulpfile.js; inside it, we can include 
other tasks or output log message, just like in a web browser. As a simple code 
example for a Gulp task is shown in the following screenshot:

Running a Gulp project
Running a Gulp project is easy. In your project's root directory, type gulp in the 
Terminal and press Enter. You should see the output in your terminal as shown in 
the following screenshot:

That's nice. If we look at the fourth line of our Terminal's output, we should see 
our output message as Default task ran. Good job! This is the same console.log 
message we created for our Default task in our gulpfile.js.

So you may ask, How did all this help optimize the JavaScript code? Well, if you 
remember Chapter 2, Increasing Code Performance with JSLint, we used JSLint to review 
JavaScript code, make improvements, and optimize files. What if we could run that 
test tool, while copying files and minifying (or even testing minified code) through 
JSLint? Well, we can, and that's the point of using build systems.

With a build system, we are improving it and optimizing our code before modifying 
it, even before it is deployed  out as a web application.



Chapter 3

[ 53 ]

Integrating JSLint into Gulp
Earlier, we talked about Gulp's plugin page; well one of those plugins is a JSLint 
plugin, and the installation process is pretty easy. First, check out the JSLint plugin 
page found at https://www.npmjs.org/package/gulp-jslint/, and as shown in 
the following figure:

So, in the same way we installed Gulp, we will run the npm command shown on the 
page, but will include sudo for administrator permissions and the -g command. This 
is a global flag to install JSLint to the full system, as follows:

sudo npm install -g gulp-jslint

Next, we will install the developer dependencies for our project, so again we will 
point to our root project directory in the Terminal and then type our npm command 
but with the -save-dev flag this time, as follows:

sudo npm install -save-dev gulp-jslint

https://www.npmjs.org/package/gulp-jslint/


Understanding JavaScript Build Systems

[ 54 ]

To verify the installation, we can check the node_modules folder in our project 
directory, and see the gulp-jslint folder, as shown in the following screenshot:

Testing our example file
Now, our build system needs a source file, and I've written an example while adding 
it to a new src project directory created in Finder. I haven't tested this yet, and it's 
shown in the following screenshot:



Chapter 3

[ 55 ]

So we have a simple Toddler JavaScript class, and it displays messages based on the 
prototype functions called; it's pretty basic and it does have some intended errors, 
so let's find these. Let's go back to gulpfile.js; I've updated it with some JSLint 
examples using the same common options enabled by us and mentioned in Chapter 2, 
Increasing Code Performance with JSLint. Take a look at the updated gulpfile.js file, 
shown in the next screenshot:

On lines 6 and 7, we can see conventions such as, gulp.src() and pipe(). The src 
function is a Gulp-specific function that sets the source file or files using a JavaScript 
array; the pipe function, which is also Gulp-related, allows us to create a list of tasks 
that will take the source files from gulp.src() and pipe them through our build 
system. Lines 5 to 19 here show a new gulp.task called JSLint. If we look at lines 
9 to 12, we can see the same options used from JSLint.com; the option names can 
be found under JSLint Directives at the bottom of the page when we select different 
options on the page.

http://jslint.com/


Understanding JavaScript Build Systems

[ 56 ]

On line 22, we added an array after our default task, adding our JSLint task name 
into an array. We can add multiple tasks here, but for now we just need the lint task. 
Now let's run the script and check our terminal.

Excellent! The red lines shown in the terminal report errors with the script that gives 
us our lint feedback in the terminal and, as we can see, we forgot some common 
things such as using use strict, missing semicolons, and so on. So we can see how we 
can automate the process of testing our code during a build using Node.js and Gulp.

Creating a distribution
Saving the best part for last, let's have Gulp handle minifying the JavaScript source 
code, copying the output to the dist folder, and then linting the output for testing. 
I've modified the ExampleScript.js file to fix most of the issues found earlier.

Now we need to download a minification tool for Gulp called Uglify, available 
at https://www.npmjs.org/package/gulp-uglify. It's a common minifier for 
JavaScript for Gulp-based projects; its installation is easy and follows the same 
procedure used for installing Gulp itself and JSlint for Gulp. The following command 
is used for installing the tool:

sudo npm install --save-dev gulp-uglify

https://www.npmjs.org/package/gulp-uglify


Chapter 3

[ 57 ]

Now I've updated our gulpfile.js with a new minify task and added it to the array 
as shown in the following screenshot:

Now, run Gulp in the Terminal window and notice the output (shown in the next 
screenshot); in the finder folder, you'll see a brand-new minified file in the dist 
directory of your root project folder, while retaining your developer source and 
getting performance linting at the same time!



Understanding JavaScript Build Systems

[ 58 ]

Summary
In this chapter, we learned how to create a simple JavaScript build system using  
Node.js with Gulp. We also explored other plugins and checked out Grunt Task 
Runner, which works similar to Gulp but contains many more plugins for your work.

Build systems help your performance greatly without much effort; keep in mind 
that gulp files can be reused for other projects, and so experiment and find out what 
works best for your projects.

In the next chapter, we will learn tips and tricks on how to use Chrome's Developer 
tools option to better optimize our web application code.



[ 59 ]

Detecting Performance
In this chapter, we'll cover our work environment and the tools needed; we will also 
cover the features and JavaScript optimization tools found in the Google Chrome 
Web Inspector, and create some test samples that show us how to use and test 
JavaScript and HTML page code.

We will cover the following topics in the chapter:

•	 Web Inspectors in general
•	 The Elements panel
•	 The Network panel
•	 The Timeline panel
•	 The Profile panel
•	 The Resources panel
•	 The Audits panel
•	 The Console panel

Web Inspectors in general
Before diving in to an in-depth exploration of Chrome's Web Inspector, it's important 
to note that there are many different Web Inspectors for different web browsers, 
typically developed by the browser's vendor for debugging a web page's application 
content and performance.

It's important to understand that, for developers to properly debug a web application, 
they should use the inspector designed for the browser with a detected issue.



Detecting Performance

[ 60 ]

The Safari Web Inspector
Apple's Web Inspector is a WebKit-based inspector built for Safari. The Web 
Inspector is built pretty similar to Chrome's Web Inspector. We will cover more on 
the Safari Web Inspector later in Chapter 9, Optimizing JavaScript for iOS Hybrid Apps, 
mainly because Safari's Web Inspector can debug web content in iOS development.

Apple has pretty comprehensive documentation on its tools  at https://
developer.apple.com/safari/tools/ and shown in the next screenshot:

Firefox Developer tools
Mozilla's Firefox web browser also has its own inspector. Originally Firefox was the 
only browser with an inspector; it was called Firebug, was developed as a plugin, 
and was not included with the main browser.

https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/


Chapter 4

[ 61 ]

Since the advent of Firefox 3, Mozilla developed its own browser inspector not just 
for their own browser but also as a debug tool for Firefox OS, Mozilla's mobile OS 
that uses HTML5 for application development. Firefox Developer tools also allow 
debugging for fairly new and even experimental forms of HTML5 and JavaScript 
development.

We can check out more information on the types of developers that the Firefox 
Developer tools allow for at Mozilla's Developer Network at https://developer.
mozilla.org/en-US/docs/Tools , as shown in the next screenshot:

Internet Explorer developer tools
In the past, Internet Explorer was considered the black sheep in the web developer's 
toolbox. Before the advent of Internet Explorer 11, Microsoft offered a simple DOM 
inspector plugin for Internet Explorer version 6 and above; though it was very 
helpful for Internet Explorer's browser issue, its feature set lacked behind other 
vendors' inspector tools.

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools


Detecting Performance

[ 62 ]

Since the release of Internet Explorer 11, Microsoft is positioning itself to support 
HTML development more than it did in the past, and its new F12 developer tools 
do just that. Most of the features found in the F12 developer tools are found just as 
good as Chrome's Developer tools and Safari's Web Inspector, with more releases 
anticipated in  future. We can read more on how to use those tools at http://msdn.
microsoft.com/en-us/library/ie/bg182326(v=vs.85).aspx, as shown in the 
next screenshot:

Chrome's Developer tools
Chrome's Inspector was originally developed using the open-source WebKit 
browser's Web Inspector, which was also used at one point in Apple's Safari.  Later, 
when Chrome decided to fork WebKit into their own browser runtime called Blink, 
Google rebuilt the Inspector for Blink from the ground up, optimizing the user 
interface and adding features not found in the open source Webkit Inspector.

Another reason for rebuilding the inspector was the introduction of Chrome for 
Android and Chrome OS applications. This allows developers to access JavaScript-
based console objects specific to development on those platforms. It also features tools 
to optimize responsive content, and debug mobile content without being on a device.

http://msdn.microsoft.com/en-us/library/ie/bg182326(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/bg182326(v=vs.85).aspx


Chapter 4

[ 63 ]

Because of the rich features mentioned here, we will cover how to use the Web 
Inspector for Chrome. If you're concerned about knowing a feature on another 
inspector, refer to the previously mentioned links and research a topic listed in  
this chapter.

Lastly, Chrome's update cycle for new features is pretty frequent and even more so 
for its beta version of Chrome called Chrome Canary, which is essentially Chrome 
with experimental features enabled including any early speed improvements for 
Blink. You can download Canary at https://www.google.com/intl/en/chrome/
browser/canary.html,as shown in the next screenshot:

Chromium's Developer tools include many more advanced features typically 
found in Firefox Developer tools. For this chapter, I'll be using the default Chrome 
Developer tools, but please check out Chromium's Developer tools as well to stay 
informed on what's available in the future.

https://www.google.com/intl/en/chrome/browser/canary.html
https://www.google.com/intl/en/chrome/browser/canary.html


Detecting Performance

[ 64 ]

Check out https://developer.chrome.com/devtools for Chrome DevTools 
Overview, as shown in the next screenshot:

Getting familiar with Chrome's Developer tools
To install Chrome's Developer tools, download chrome from http://www.chrome.
com/, and that's it! Chrome's Developer tools are included with Chrome with no 
extra installation needed.

First, open a new window in Chrome and type about:blank in the omnibox (or the 
address bar). Next, let's open up the Developer tools by using the keystrokes Ctrl 
+ Shift + I (or Command + Option + I on the Mac). We should see a blank screen with 
Developer tools showing up, as shown in the next screenshot:

https://developer.chrome.com/devtools
http://www.chrome.com/
http://www.chrome.com/


Chapter 4

[ 65 ]

By default, Chrome's Developer tools will either be displayed in dock mode, as 
shown before, or in its own window; if you want to undock or redock the Developer 
tools, select the dock button.

Holding down the dock button allows us to dock the Developer tools to the side of the 
browser window. You can find the dock button flagged in the following screenshot:



Detecting Performance

[ 66 ]

The Developer tools are broken up into different panels, that are shown at the top 
of the window, each panel containing different features and debugging options for 
a web application. We will focus on the JavaScript-specific panels, but we will cover 
each panel briefly for anyone who's not so familiar with them.

The Elements panel
The Elements panel displays both the HTML page's source code and DOM Explorer, 
allowing developers to inspect changes in the DOM. We can highlight elements by 
either placing the mouse over the DOM tree, or by using the magnifying lens as 
indicated in the following screenshot:



Chapter 4

[ 67 ]

The Network panel
The Network panel displays page download speeds of all the resources and the code 
it contains. Let's test this out by going to http://www.packtpub.com/ and opening 
the Network panel (located right next to Elements). Click the record button on the 
top left of the panels as shown in the following screenshot:

Now, let's refresh the page with the record button on. We can see which page 
resources are taking longer to load in our web page. This is important when 
considering loading resources in JavaScript. If we target an element or a script  
that doesn't yet exist in our DOM, an error could occur.

http://www.packtpub.com/


Detecting Performance

[ 68 ]

If we take a look at the following screen, we can see that the blog-banner.png 
graphic is taking the longest time to load on http://www.packtpub.com/.

We can also select a resource as well; let's click on one of the image resources. (I'll 
choose blog-banner.png, this may or may not exist on your page. If you are testing 
on first load, give the site a few moments to load). When we select it, we can see a 
new sub-panel appear showing a preview of the image if it's a graphic or the source 
code if it's a JavaScript or JSON file.

http://www.packtpub.com/


Chapter 4

[ 69 ]

We also have tabs in the subpanel, one of which is called Response. This gives 
information to POST event resources found by DevTools. We also have a tab called 
Headers. The Headers tab displays request information for that file, including (more 
importantly) whether the image uses any server-side caching. In this case, our blog-
banner.png file has a Cache-control: max-age value indicating a maximum cache 
age of 3153600000 seconds or ten years. We can also see the full Request URL noting 
that it's using a cloudfront.net URL, so we can infer that the image is using Amazon 
S3 for caching and distribution, as shown for both in the following screenshot:



Detecting Performance

[ 70 ]

The Sources panel
Here we are going to learn about the Sources panel, with the help of the following 
aspects:

Debugger basic usage
The Sources panel is home to most JavaScript developers; it's where we debug our 
JavaScript applications. Using it is pretty simple; click the pause button up on the 
top left section right near the Watch Expressions option, as shown in the following 
screenshot:

Testing the debugger
Let's try out the debugger. Open the 01 folder inside the Chapter_4 folder, in our 
Exercise_Files folder in the code bundle provided by Packt Publishing's website. 
Inside it, we can see a very simple code sample, and we also have an HTML5 index.
html page, which looks like the following screenshot in our source view:



Chapter 4

[ 71 ]

We can see that we have a very empty web page with some styling added for the 
body tag; we've also added a main.js external JavaScript file handling all of our 
page logic. What we are going to do here is inspect a function with a while  
loop inside.

The loop will append the document.body tag with the paragraphTag variable, 
each with an index variable called as a global variable named my_integer outside 
the while loop, which is contained in a loopingTo5k() function. This is called on 
line 14, where it is being triggered by a window.onload event, as shown in the next 
screenshot displaying the main.js source view:



Detecting Performance

[ 72 ]

With our source code in place, let's go ahead and run our page in Chrome with our 
Sources panel open. If we look at the screen, we can see a set of numbers moving 
down the page in a sequential order ending at 5000 on the last line of the document. 

Let's select the main.js file in our Sources panel, add a breakpoint to line 8 of our 
source code, and see what the Sources panel can do. Now with our breakpoint set, 
let's refresh the page. When we do this, we can see the page graying out with a note 
in yellow at the top indicating that we are paused in our debugger, and line #8 in our 
main.js file is highlighted in blue, noting where the debugger paused.

We can also see the Scope Variables option, which shows all the properties and 
objects of a given scope at the time of execution; in this case, the scope is inside the 
loopingTo5k() function. To get more information, we can refer to the right section 
of the Sources panel and look at the Local tree for information, or we can mouse 
over the objects in our code file for more information. As shown in the following 
screenshot, I've highlighted the document.body object in my function's scope, 
creating a new paragraph object in JavaScript.



Chapter 4

[ 73 ]

When we're finished with debugging, we can press the play button highlighted blue 
in the Sources panel, or we can Step Over our function via the control next to the 
play button and move on to our next function. Keep in mind that, if we have any 
further breakpoints, they will break further down the source file in our web page. To 
remove breakpoints, we can drag them off our line number column and press play to 
resume without debugging.

Using the debugger keyword
A little known feature in JavaScript programming is the debugger keyword; it's a 
very simple helper function. When running code, it will trigger the Sources panel or 
another JavaScript debugger connected to break automatically; this is helpful when 
going over large code bases or having trouble breaking on a certain line.

Let's say that, in our example code thus far, we had a while loop, causing an issue 
with our code at the 555 iteration of my_integer. If we had to step through this, 
it would take 555 presses of the play button to get there. However, there is a way 
around this.

To demonstrate this, I've set up a copy of these source files and saved them in the 02 
folder in the code bundle provided to you through Packt Publishing's website under 
the Chapter_03 folder in the Exercise_Files folder. I've only made one change here 
in the code: adding a conditional if statement on lines 12 through 14, ensuring my_
integer is equal to 555. If that is applied, I would call the debugger by simply writing 
debugger with a semicolon to end the line, as shown in the following screenshot:



Detecting Performance

[ 74 ]

Now calling debugger is easy. Let's load our index.html file again with our 
debugger code, and here we can see that, without setting a breakpoint, our Sources 
panel automatically detects the line and sets the breakpoint without iterating 
through each loop (as shown in the following screenshot):

The Timeline panel
Here, we are going to learn about the Timeline panel with the help of the following 
aspects:

Using the Timeline panel
The Timeline panel allows us to detect the overall web page performance with 
respect to JavaScript; it also allows us to inspect browser rendering events. To use  
the Timeline panel, all we need to do is click the record button and reload the page 
in Chrome.



Chapter 4

[ 75 ]

In the Timeline inspector, there are four types of events that the Timeline panel 
shows. These are Loading, Scripting, Rendering, and Painting events. I've loaded 
the example file (02), discussed in an earlier section, showing the events running 
through the Timeline panel, as seen in the following screenshot:

The Loading event
The Loading event handles requests and responses; typically these are loading 
external scripts and files as well as POST requests for data leaving the page. Loading 
events also include the initial parsing of HTML code. In Google Chrome's Timeline, 
these show up in blue.



Detecting Performance

[ 76 ]

The Scripting event
The Scripting event occurs when the browser reads and interprets JavaScript code. 
In the Timeline panel, you can expand a Scripting event and see at what point a 
function was received in the browser. Scripting events appear as yellow lines in 
Google Chrome.

The Rendering event
The Rendering event occurs when image files and scripts affect the DOM; this can be 
when an image is loaded without a size specified in an image tag, or if a JavaScript 
file updates the CSS of a page after the page is loaded.

The Painting event
The Painting event is the last type of events and typically is used in updating the 
UI. Unlike Rendering event, the Painting event occurs when the browser redraws 
an image on the screen. For desktop JavaScript development, Painting events aren't 
usually a concern, but become strongly concerning when we start looking at mobile 
web browsers. 

Typically the Painting event is forced when an element's display is updated from its 
original. They can also be triggered by updates to an element, such as an element's 
top or left positioning.

The Profile panel
The Profile panel helps a developer analyze a web page's CPU profile and take heap 
snapshots of the JavaScript used. A CPU profile snapshot is helpful when it comes 
to checking large complex applications to see what files may cause issues in terms of 
object size.

A JavaScript heap snapshot is a compiled list of objects found in the page's overall 
JavaScript. This includes not only the code written by us, but also the code built into 
the browser, such as the document or console objects, giving an overall list of all 
possible objects in an application.



Chapter 4

[ 77 ]

Using the Profile panel is similar to the Timeline panel; select either the Take 
Heap Snapshot or the Collect JavaScript CPU Profile option, and then click Start, 
followed by reloading the page. In the following screenshot, I have selected the 
Collect JavaScript CPU Profile option:

The Resources panel
The Resources panel lists all files associated with the web page being viewed in the 
Developer tools option, each of which can be sorted by the type of file; developers 
can individually view each file. It also shows images on the page along with their 
information such as Dimensions, File size, MIME type, and source URL.

More importantly, the Resources panel is home to any browser data storage, which 
includes Web SQL, IndexedDB, Local Storage, Session Storage, and Cookies. Users 
can look at a page's Key-Value pair values in the browser's storage data. This is 
helpful in testing storage state and store values in JavaScript code. 



Detecting Performance

[ 78 ]

Viewing the Key-Value pairs is easy; in the Resources panel, select the storage type 
and take a look at the key values table, as shown in the following screenshot using 
Packt Publishing's website while viewing local storage:

The Audits panel
Here, we are going to learn about the Audits panel, with the help of the following 
aspects.



Chapter 4

[ 79 ]

Interacting with the Audits panel
The Audits panel audits the full web page's application Network Utilization 
and overall Web Page Performance; this is one of the easier to use and more 
straightforward panels in the Developer tools options provided by the browser. 
Using the Audits panel is easy as well. First, open up Packt Publishing's website 
again, select the Audits panel using the Developer tools option, and then check 
the Select All option; this will test network speeds and the overall web page 
performance. Lastly, be sure to set the radio button Reload Page and Audit on  
Load, prior to clicking the Run button. This will ensure that the audit test checks  
for network usage properly rather than a cached state, just as its shown in the 
following screenshot:



Detecting Performance

[ 80 ]

Getting Suggestions for JavaScript quality
If we're only checking for JavaScript performance, uncheck the Network Utilization 
option and run the test as well; we need to keep this in mind if we're testing for a 
specific point in our application. We will need to switch the radio button to Audit 
Present State, and click Run to get suggestions for the current state of the web 
application. Let's run the test on https://www.packtpub.com/, and then select the 
file under Results. Let's take a look at the performance improvement suggestions as 
shown in the following screenshot:

If we look closely, we can see very readable suggestions, with respect to our page's 
JavaScript code, affecting the overall page performance. In this case, the audit has 
detected 3 inline scripts and recommends moving the inline scripts to improve 
performances. There is also feedback on how many CSS rules included in the page are 
not used (on this page at least). It also tells us whether vendor prefixes are being used 
in CSS and not web standard properties. All of these suggestions are very helpful.

https://www.packtpub.com/


Chapter 4

[ 81 ]

The Console panel
The last out-of-the-box panel is the Console panel. It's the simplest panel here, 
but it's also where developers on JavaScript spend most of their time. Now my 
assumption is that we're fairly familiar with the Console panel at this point, so I 
won't deep dive into this panel too much. We can test code in the console and search 
for objects, DOM elements, and attributes in a page. For instance, let's say I type the 
following into the console while on Packt Publishing's website:

document.body.classList

This should return a JavaScript array on the next line showing all the classes 
available to us, and it does show one having with-logo as the class name,  
as shown in the following screenshot:



Detecting Performance

[ 82 ]

The Console panel and the Console API in Chrome are constantly evolving in 
terms of features in Chrome's Developer tools. To keep up with some of the newer 
tools, check out the Chrome's DevTools Console API page available at https://
developer.chrome.com/devtools/docs/console, which shows how to use the 
console for custom outputs such as console.table() and console.profile()  
to make developing in the console much easier.

Summary
In this chapter, we explored the base panels that come with the consumer version 
of the Google Chrome Developer tools; many of these tools carry over to other 
inspectors and developer tools (this was also covered earlier in the chapter). I 
encourage you to read up on each and see where and how the code is inspected  
in other inspectors  as well as in Chrome's Developer tools.

In the next chapter, we'll get into JavaScript performance coding without any help.

https://developer.chrome.com/devtools/docs/console
https://developer.chrome.com/devtools/docs/console


[ 83 ]

Operators, Loops, and Timers
In previous chapters, we reviewed the basic tools used in JavaScript development. 
We looked at IDEs, code editors, and JSLint, a JavaScript code validator that not 
only showed us where our code contained issues, but it also gave us warnings and 
suggestions on how to improve our code.

We also learned about the console.time and console.timeEnd methods that allowed 
us to quickly test our code execution performance. Finally, we learned about creating a 
basic build system to ensure our final code base is optimized and bug-free.

It's important to say that all of these tools and techniques are essential to write 
high-performance code, not because of the JavaScript you know, but because of the 
JavaScript you don't know. JavaScript is a language that anyone can pick up and start 
writing code without knowing object-oriented programming or knowing a pattern 
such as Model View Controller (MVC); over the years, however it's been modified 
to accommodate these higher-level programming concepts (hacked or otherwise).

The flip side of an easy-to-use language is that it's very easy to write bugs or even 
nonoptimized code; this effect is doubled and even tripled if we're writing complex 
JavaScript. As mentioned in past chapters, one characteristic of JavaScript developers 
in general is that we are human, and we make mistakes. Much of this is just a lack of 
awareness on the part of the developer, which is why using build systems and 
code checkers such as JSLint is so important, long before we write perfect high-
performance JavaScript; if we don't, these tools have us covered.

In this chapter, we are leaving tools and build systems behind and are getting into 
JavaScript performance concepts head-on, breaking up the subject matter across two 
chapters, starting with following topics:

•	 Operators
•	 Loops
•	 Timers



Operators, Loops, and Timers

[ 84 ]

Operators
In this section, we are going to learn efficient ways to create for loops using the 
comparison operator.

The comparison operator
The comparison operator, ==, is an operator that's common in JavaScript development 
(typically in if statements); it equates one object with another and returns a boolean, 
(true or false) value. It's pretty straightforward and is very common in C-based 
languages.

Because of this, it's easy to take advantage of this operator and use it across a large 
code base. The reality of this is that the equals operator is slow compared to using 
the === strict comparison operator, which also compares object types as well as the 
object's value. As the JavaScript interpreter doesn't have to confirm the type before 
checking the equality, it operates faster than using the double equals operator.

Is strict faster?
Let's test this using the console.time method. In the following screenshot we have  
a 05_01.js code sample; we can also see this sample in the example files of this book, 
provided on the Packt Publishing's website:



Chapter 5

[ 85 ]

Here, we have three variables on lines 5, 6, and 7; two of these variables are floats 
referencing the pi value, and the last variable is a string with the same pi value.  
We then have an anonymous function with a test variable on line number 12,  
which equates both our floats with a double equals operator. Wrapped around  
the function, we have console.time and console.timeEnd functions on lines  
9 and 14, respectively.

Let's run this in the Chrome browser; open up Chrome followed by Developer tools 
from the More tools option on an about:blank tab, and then open the Snippets 
tab in the right-hand side column under the Sources panel. The Snippets tab is like 
a scratchboard built to test JavaScript code; right-click in the tab content area, and 
select New. Save your snippet with a name and copy the code from the example,  
as shown in the following screenshot:

Next, right-click on the code snippet in the left-hand side rail and click on Run. 
You'll notice the console appear at the bottom of the Developer tools window.  
We can also see a Check PI: 0.016ms console message. This shows us that  
running the comparison operator on this simple evaluation takes 0.016 ms to 
complete. What if we changed the comparison operator to a strict comparison 
operator to see what the result would be?



Operators, Loops, and Timers

[ 86 ]

On changing the operator, we can see that our second console.time message is 
Check PI: 0.007ms. This is a simple example, sure, but it proves that the code  
runs faster using strict type checking with strict comparison operators.

Loops
In this section, we are going to learn efficient ways to create for loops in detail.

How loops affect performance
Loops are a very common way to iterate through large blobs of data or objects and 
iterating through each instance of a DOM object or a piece of data. Let's say we have 
a simple loop that generates a p paragraph tag and appends the page with an inner 
text value of the i integer in the loop, with a maximum limit of 9000. Let's take a 
look at the following code sample and see how this is done. I've created a simple 
HTML5 page with a script tag that includes the code on line 10, as shown next:



Chapter 5

[ 87 ]

So, how is this code process-intensive? For starters, if we look at line number 17,  
we can see a variable called ptag that was created to create a blank paragraph tag 
in our DOM. We then apply the integer's current value in the loop to the innerText 
property of the ptag variable; and lastly, we apply the newly created paragraph tag 
into the DOM with the value we specified at that point in the loop. For performance 
testing, we also wrapped the for loop in a console.time wrapper method to check 
the performance speed. If we run this in Chrome, we should get a page with a line 
for each number created in the for loop along with a console.time method with  
a process time label, as shown in the following screenshot:



Operators, Loops, and Timers

[ 88 ]

Looking at our process time label, we can see that processing this block of code 
about takes 18 milliseconds to complete. This is not great, but we can make it better; 
let's update our code and move the ptag variable and our i integer variable outside 
the for loop so that they don't get recreated with each iteration of the for loop.  
Let's see what this looks like by updating our code, as in the following screenshot:

Notice that, on line number 16, we've moved the i and ptag variables outside 
the loop, and we are reassigning values and objects created in the loop rather than 
creating a unique scope for each loop pass. If we rerun our page, we should see the 
same body tag get updated with a slightly smaller performance number than before; 
in the following case, it should run in the range 15–17 milliseconds:



Chapter 5

[ 89 ]

The reverse loop performance myth
A new idea that seems to have appeared in JavaScript developer circles is the  
concept of a reverse for loop. A reverse for loop is written just like a loop,  
but the loop counts backward rather than forward.

The idea behind a reverse loop is that, by counting backward, some JavaScript 
interpreters run loops faster. Let's test this and see whether this actually improves 
the speed of a for loop. First, let's create a for loop, counting forward from 9000; 
we won't include any logic in the for loop, with the exception of adding an external 
variable called result.



Operators, Loops, and Timers

[ 90 ]

Using our result variable with an increment, we can determine whether we are 
counting as we should and triggering a line of code at the end of 9000 in both a reverse 
loop and a standard for loop. In our case, a console.timeEnd function, as shown in 
the following code, is in its own HTML page, with a script tag at the bottom.

Let's take a look at the code sample. On line 13, we can see that we declare our 
result variable before starting our for loop while, on line number 14, we start  
the console.time wrapper method that has a label called Time Up. On line 15,  
we start our for loop and increment result on line 16. Finally, on line 18, we  
have a condition where we ask whether the result is equal to 9000, and we execute 
our timeEnd function on line 19.

If we load the page with our for loop script inside the body tag, our console in 
Developer tools should output the following information:



Chapter 5

[ 91 ]

So, our console.time object tells us that our standard for loop with a maximum value 
of 9000 takes roughly 0.15 milliseconds to process in Google Chrome. Having nothing 
else included on the HTML page, which isn't hosted on a server, ensures that network 
lag isn't a factor. This is a good baseline with which we can compare a reverse loop.

Now, let's test a reverse for loop; here, we've created an updated version of the for 
loop, including our result variable. This is similar to the previous process, but let's 
take a look at the code sample in the next screenshot:



Operators, Loops, and Timers

[ 92 ]

If we look at line number 15 in this code sample, we can see that we've altered this 
line a bit so that the loop counts backward rather than forward. We start by setting 
the increment variable, i in this case, with a value of 9000, and then we test whether 
i is greater than 0. If it is, we decrease the i value by one.

On line 17, we still increment our result variable as we did previously. This way, 
rather than using the for loop's decrement variable i, the result variable exists  
as our count outside the loop, counting up. This is called by the reverse loop. When 
the result equals 9000 on line 18, then on line 19 the console.timeEnd function  
is executed. 

Let's test this in the Developer tools option in our Chrome browser and see what 
value we get, as shown here:

So, we can see our result in Developer tools, and our reverse loop's processing time 
is around 0.16 milliseconds, which isn't too much of a difference when comparing it 
with a for loop. In many cases, a reverse for loop isn't necessary for most JavaScript 
projects unless we need to count backward for a project.

Timers
Here, we are going to learn about optimizing JavaScript timers in detail.



Chapter 5

[ 93 ]

What are timers and how do they affect 
performance?
Timers are built-in functions of JavaScript that allow the execution of either inline 
JavaScript code or permit functions to be called at a specific point of time after,  
or repeatedly during, the life cycle of a JavaScript application.

Timers are a great tool in a JavaScript developer's toolbelt, but they have their own 
issues when it comes to performance. Consider the fact that the JavaScript language 
is single-threaded, which means that every line of code in our application cannot 
be fired at the exact same time as another piece of code in our application. To get 
around this, we use a built-in function called setTimeout.

The setTimeout method takes two parameters to delay a block of code from 
executing; the first is either the name of a function with our code or a line of 
JavaScript code by itself, followed by an integer specifying the extent by which  
we want to delay code execution which is in milliseconds.

On the surface, the setTimeout function may seem harmless, but consider this. 
Let's say we have two functions, both being triggered by one setTimeout function 
each with a for loop that prints an incremented value of the for loop to the console 
window. Each function will have a different maximum value and the lower count 
function will be called slightly after the first larger functions of the for loop. Let's 
take a look at the code sample here:



Operators, Loops, and Timers

[ 94 ]

We can see that this is an empty HTML5 page with a script tag with our code on line 
number 9. On lines 13 and 20, we have the start of two similar functions: one called 
delay300000() and another called delay3000(), with each function containing a for 
loop that prints each step of the loop to the console using the console.info statement. 
The console.info statement is a type of console print that simply formats the console 
line to indicate information.

Now, on line 27, we will trigger both functions inside a window.onload function, 
with the larger delay function called 50 milliseconds after the page load and the 
shorter function called slightly later at 150 milliseconds. Let's try this in Chrome  
and see what happens in Dev Tools, as shown next:

Here, we can notice quite a bit of lag as we print all these lines to the console.  
We can also see that we triggered both in a given timeout. In the preceding 
screenshot, we can see that our delay3000() isn't triggered until after our  
larger function, delay300000(), is completed.

Working around single-threading
Sadly, with plain JavaScript, we simply can't "multithread" a function like these 
two at the same time, but we can incorporate something like a callback method in 
our code. A callback method is simply a JavaScript function that's triggered when 
a function is completed. Let's set up our delay300000() function to call back our 
delay3000() method once it's completed. Here's what it would look like:



Chapter 5

[ 95 ]

Looking at our code sample, we can see on line number 13 that we've added a 
parameter with the name callback. It's important to know that here, the naming 
of our callback method isn't important but including a placeholder parameter for 
a function is. Our placeholder function that will serve as our callback function is 
Delay3000().

Notice how we renamed Delay3000 on line 22, capitalizing the d. The purpose of  
this is to indicate to the JavaScript interpreter that this is a constructor, a function that 
requires it to be initialized in memory. This is done by capitalizing the first letter in the 
function's name. You may recall from Chapter 2, Increasing Code Performance with JSLint, 
if we use a capitalized function name JSLint will return a warning that it "thinks" a 
constructor is being used even if it's a plain function. To keep our interpreter from 
second-guessing itself, we want to ensure we are writing our functions and objects  
as we intended.



Operators, Loops, and Timers

[ 96 ]

Finally, we have updated our onload function's logic by removing the extra 
setTimeout for delay3000, and we added the newly renamed Delay3000 (without 
parentheses) as a parameter inside our delay300000() function in the setTimeout 
function. Let's run this again in our browser, and take a look at our console's output.

If we scroll down near the bottom of the console log (after processing the initial 
delay300000() function call), we can see that our Delay3000 log message appears 
after completing the initial function. Using callbacks is a great way to efficiently 
manage your application's thread and ensure proper load stacking of a heavy 
application, allowing you to pass parameters after an initial function is completed.

Closing the loop
Lastly, as we can see in this callback method example, it's usually not a great idea 
to use large hundred thousand scaled loops for performance reasons. Always look 
for better and more efficient ways to break up large loops and call other functions  
to help balance out the workload.

Also, I encourage you to check out JavaScript promises, an EcmaScript 6 feature. 
While not quite ready for discussion yet in this book, as at the time of writing, 
promises are still experimental. I encourage you, dear reader, to follow up and  
learn about what will be a successor to callbacks in JavaScript when it's finalized. 
You can learn more about promises on Mozilla's Developer Network site at 
https://developer.mozilla.org/en-US/.

Summary
In this chapter, we learned about conditionals and how efficient strict comparisons 
help our JavaScript perform better at runtime. We also learned about loops and how 
to optimize loops, preventing objects that are not required for our code base from 
being repeated over and over in a for loop and thus, keeping our code as efficient  
as possible.

Lastly, we also learned about timers and single-threading in JavaScript applications 
and how we can use callbacks to keep our code running as smoothly as possible even 
when we overload it. Next, we cover arrays and prototype creation performance and 
find out how best to work with them in JavaScript.

https://developer.mozilla.org/en-US/


Constructors, Prototypes, 
and Arrays

Now that we are getting comfortable with optimizing JavaScript without a linter 
or an IDE testing our code for us, it's time to dive into more complex optimization, 
specifically when it comes to memory and object creation. In this chapter, we're 
going to take a look at optimizing larger JavaScript code bases using constructors, 
prototypes, and arrays.

We are planning to cover the following topics in the chapter:

•	 Building with constructors and instance functions
•	 Alternate constructor functions using prototypes
•	 Array performance



Constructors, Prototypes, and Arrays

[ 98 ]

Building with constructors and instance 
functions
Here, we will learn about building with constructors and instance functions in the 
following ways:

A quick word
Depending on skill level, some of us following this book may or may not know 
exactly what prototypes are in JavaScript. If you're one of the readers who've  
heard of prototypes in JavaScript but don't use them on a daily basis, you need 
not worry as we will quickly cover the basic concepts and how to apply them to 
JavaScript performance.

If you're one of those who know what closures, inheritance, parent and child 
relations, and so on are, feel you fall into the latter category and so want to skip this 
chapter, I would encourage you to keep reading, at least to skim through the chapter, 
because, we as JavaScript developers tend to forget common concepts while working 
with JavaScript for many years and continuously focusing on just the factors that 
affect our performance.

The care and feeding of function names
Take a close look at this simple function shown below and see if you spot anything 
unusual about this function.

 



Chapter 6

[ 99 ]

Now, when we look at the code, what we can see is a simple function named 
AuthorName holding the author parameter. The function uses a use strict 
statement discussed in Chapter 2, Increasing Code Performance with JSLint, which forces 
Developer tools or other similar inspectors to treat any kind of warnings in that 
scope as errors. We then return the author parameter using the return keyword.

This looks fairly normal; however something that trips up many JavaScript 
developers is how the function name is structured. Notice that AuthorName starts 
with a capital A. In JavaScript, when we declare a function name with a capital letter, 
we are actually telling the JavaScript interpreter that we are declaring a constructor.

A constructor is simply a JavaScript function, and it works the same way as any 
other function. We can even print an author's name to the console using a simple 
console.log function as shown in the following screenshot using Developer tools:

If we run this in an about:blank Developer tools console or dummy HTML page 
with this code, we will see the console output as the name just as we would expect. 
The problem is that, in order to efficiently use constructors, we need to use them 
with the new keyword.

Now you may ask how we can possibly know if any of our existing JavaScript code 
uses constructors. Imagine a very large code base with functions everywhere; how 
can we check this if even the Developer tools option doesn't inform us that we need 
to use an instance using new rather than a static function call?



Constructors, Prototypes, and Arrays

[ 100 ]

Luckily, there is a way. If we remember in Chapter 2, Increasing Code Performance with 
JSLint, JSLint can show us if we need to use a new keyword. I've added the preceding 
code sample and enabled the console and browser objects in JSLint. Check out the 
error presented by JSLint in the following screenshot:

As we can see from JSLint, on line 11 we're given an error, Missing 'new' as our 
only error, indicating that we have a constructor and we need to use it as such.



Chapter 6

[ 101 ]

Understanding instances
Now the easy way to fix this issue is to change the name of the AuthorName function 
to camel case; that is, we change A to lowercase (a). But here we're going to indicate 
this as an instance, and you may ask why? Well in JavaScript, every time we write an 
object, a variable, a function, an array, and so on, we are creating objects.

By using instances, we keep our object usage down. In JavaScript, an instance 
is only counted once in memory. For example, let's say we use a document.
getElementById() method. Every variable saved with that object is given a memory 
count of one but, if it's in an object we declare with the new keyword, that count is 
only counted once rather than reused for every occurrence of getElementById(). 
By using the new keyword, we create an instance of our constructor (in this case 
AuthorName) that allows us to reuse that function in the same manner that we 
typically use it.

Creating instances with 'new'
Creating a new instance is pretty easy; we can simply call a new instance to run 
a function, as shown in the following screenshot, using the new keyword in our 
console.log function on line number 11:

If we run this code inside a blank page or a simple HTML page, we will see that our 
log doesn't output the way we expect. But we can see an object return AuthorName 
{} in the Console panel of the Development tools in Chrome. What this shows us is 
that we are actually logging a new instance of an object, but not the author's name.



Constructors, Prototypes, and Arrays

[ 102 ]

In order to properly display this name, we will need a keyword to declare a reference 
to the instance of this constructor. To do that, we will use the this keyword; in 
JavaScript, this is a reference to the exact point in execution in a scope.

The this keyword in JavaScript refers to the scope and variable that exists at that 
point of script execution when it is used. For example, when you use a this keyword 
in a function, it can reference a variable that is also in the same scope (or inside a 
function). By using a this keyword, we can point to variables and objects at a certain 
point in a code's execution.

A scope is simply a block of JavaScript code with its own variables and properties. 
Scopes can include a global-level scope of a single JavaScript object, meaning an entire 
JavaScript file, a function-level scope where variables and properties are set inside a 
function, or, as discussed earlier, a constructor since a constructor is a function.

Let's rewrite our AuthorName constructor with this keyword so that we can 
reference our scope and print our value to the Console panel. We will need to create 
an initializer inside our constructor in order to get our scoped variables returned. An 
initializer (sometimes called an init function) specifies certain variables inside our 
constructor and assigns properties on creation.

Here, we create a variable with a this keyword prefixed to indicate that we are 
referencing our instance inside our constructor followed by our function called init, 
which equals a function, just as we would use a variable to declare a function. Let's 
take a look at this in the code shown in the next screenshot:



Chapter 6

[ 103 ]

Take a look at line numbers 13 and 15; on 13 we declare a variable author1, with 
a new AuthorName constructor having Chad Adams as the string parameter. In this 
example author1 is an instance of the AuthorName constructor with Chad Adams as 
the only parameter.

Also notice that, on line number 15 in our console.log, we have an init() function 
that is an inner function of our constructor. We can create other functions in our 
constructor as well, for instance printing a custom log message like this as shown  
in the next screenshot:

As we can see on line number 11, we have now added a helloInfo() function, 
scoped to our AuthorName constructor, that prints out a custom message using the 
author parameter. Then, on line number 20, we call this outside a console.log 
by simply calling the function of the constructor, which has its own console.info 
function wrapped inside.



Constructors, Prototypes, and Arrays

[ 104 ]

This is helpful in keeping our logic confined to a single object inside our code base 
and keeps our code nicely organized. This is called object orientation; it's great 
for reusing code but might cause issues with performance in JavaScript. Let's try 
an example. Here, we have two examples of the same code, each wrapped in a 
console.time and console.timeEnd function. The following screenshot shows  
our reviewed code and the resulting time to render the code:

So our total time here is roughly 2.5 milliseconds. This isn't too bad, but now let's 
see what happens if we use simple non-constructor functions and what the speed 
of rendering the same output would be. As shown in the following screenshot, I've 
pulled apart our constructor and created two separate functions.



Chapter 6

[ 105 ]

I've also called the main authorName function within the secondary function in the 
exact same manner as on our console.log function to print an author's name. Let's 
run the code shown updated in the next screenshot, and see if this runs faster or 
slower than our constructor methods. However, do keep in mind that, depending  
on our system's speed and browser, the results may vary.

So, with static functions our results hover right around 4 milliseconds, which is 
longer than our instance-built object. So, that's a great use of static functions over 
prototype functions in JavaScript!



Constructors, Prototypes, and Arrays

[ 106 ]

Alternate constructor functions using 
prototypes
Here, we will learn about the concept of alternate constructor functions using 
prototypes.

Understanding prototypes in terms of 
memory
We've covered how to create instance functions inside a constructor, and we've 
also learned about scope inside one as well using the this keyword. But, there is 
one more thing to cover: the ability to append a constructor with another instance 
method outside the constructor, which is helpful in many ways. First, it allows us,  
as developers, to create functions outside the pre-written constructor if needed.  
Next, it also keeps our memory usage small. Before diving into this, let's rework  
our constructor code to use prototypes, as shown in the next screenshot:



Chapter 6

[ 107 ]

Now looking at this code updated, we can see that the constructor functions 
have been removed but pulled outside the constructor: they were then moved to 
prototypes of the AuthorName function using the same function names used earlier. 
Now, you can notice that, on lines 10 and 13, we can use this in our prototype 
function because we are referring our constructor's instance to print that instance's 
specific variables.

Which is faster, a prototype or a constructor 
function?
You may also notice that I've again added console.time and console.timeEnd 
functions to our function calls on lines 16 through 22. So do you think that 
prototypes will be faster or slower when compared to standard constructor 
functions? Well, here in the next screenshot we can take a look at the results:

Wow, 4.2 milliseconds to fire the prototypes when compared with 2.1 milliseconds 
using constructor method; what happened here? We essentially created functions 
after the constructor. The output is slow, but this is to be expected with prototypes, 
as the intention is to append a constructor with a prototype.



Constructors, Prototypes, and Arrays

[ 108 ]

At this point, we may think "Oh wow I never knew that, I should never code a 
prototype again!" Now, before we start deleting prototypes from our project files, I 
want to explain scalability with prototypes. It is true that prototypes, when called 
for a constructor function, can be slower… "in the small. What do I mean by in the 
small?" Well, for small uses of prototypes such as this particular example, we can  
see prototypes run slower than a traditional constructor method.

Now here's the rub; for larger projects, a constructor in a large-scale application may 
have 50 functions, 200 functions, and so on. When we call those larger constructors 
over and over, it gets pretty expensive in terms of memory just by calling the 
instance of a constructor since it has to ready all the functions contained inside.

By using prototype methods, those initial constructor calls are stored in memory 
once. For small uses of prototypes the performance benefits aren't visible since we use 
the memory in-place as if we had a simple static function but, once it's set up, it's in 
memory and doesn't have to be recalled or reprocessed like a static JavaScript function.

One more thing about prototypical inheritance, though performance issues can 
arise from its use over static functions, it can be very helpful for large codebases. If a 
project has scope concerns or uses libraries that may cause conflicts, consider using 
a namespace. This works similar to prototype classes but function like simple static 
functions that prepend with a namespace to prevent conflict.

Array performance
We typically don't think about arrays when dealing with performance, but it's worth 
mentioning a few things here. First, large arrays can be messy and performance hogs 
when you're trying to work with a large amount of data. Typically with arrays, we 
only need to worry about two things: searching and array size.



Chapter 6

[ 109 ]

Optimizing array searches
Let's create an array that has a lot of values in it; here I've created an array called 
myArray which has 1001 values within, with a string value of key and the index of 
the array. You can grab the full version in the 06_09.js file inside the Chapter_6 
folder of the example code on the Packt Publishing's website. Here's a part of the 
code sample of the total array:

There are two ways to look up a value in an array; the first uses the indexOf() 
function, which is an array-specific function that looks up each value and returns 
the index of that searched value. The other way is to specify the index value directly, 
which returns the value (assuming we know the index of the value we need).



Constructors, Prototypes, and Arrays

[ 110 ]

Let's try an experiment where we are going to use a pre-made myArray of 1001 
values and iterate through them with the indexOf() function, and then again with 
just an array. We have appended the code after our myArray, and we've wrapped 
this code block in console.time and console.timeEnd functions, as shown here 
with the time rendered in Chrome Developer tools:

This shows that our result for searching that large array was roughly 5.9 
milliseconds. Now, for our comparison, I'm going to keep our indexFound variable 
even though we can simply specify the index of the array value we want. We will 
also search using the same index value, which is 541. Let's update our code as shown 
here and view our results in Chrome Developer tools:



Chapter 6

[ 111 ]

It looks like our results trim our index searching performance time by quite a bit. So, 
when you're structuring arrays in JavaScript, only use indexOf if you need to and 
try to directly call the index if possible. So why was the time output so different? 
It's simple; in this second example, we indicated the position of the array manually 
rather than having JavaScript look up the key on its own. This sped up the JavaScript 
interpreter as it iterated through our array and provided a value.



Constructors, Prototypes, and Arrays

[ 112 ]

Summary
In this chapter, we learned about the proper use of constructors. We learned about 
instances in JavaScript using the new keyword, and found that we can speed up static 
code with constructors while scoping our code at the same time.

We learned about prototypes and how they scale well for large applications while 
adding little value for smaller projects. Finally, we also learned about searching 
arrays and about performance loss with arrays by using the indexOf function.

In the next chapter, we are going to look at how to write our JavaScript to optimize 
our Document Object Model for our projects.



[ 113 ]

Hands off the DOM
In this chapter, we will review the DOM in relation to writing high-performance 
JavaScript, and see how to optimize our JavaScript to render our web applications 
visibly faster.

We will also take a look at JavaScript animations and test their performance against 
modern CSS3 animations; we will also test for paint redraw events in the DOM and 
quickly test for scrolling events attached to a page that may affect performance.

We will cover the following topics in the chapter:

•	 Why worry about the DOM?
•	 Don't we need a MV-whatever library?
•	 Creating new objects using the createElement function
•	 Animating elements
•	 Understanding paint events
•	 Pesky mouse scrolling events

Why worry about the DOM?
The Document Object Model (DOM) is how our HTML content is presented in our 
web browser. It's not quite the same as the source code; the DOM is the live updated 
version of our source code as we make updates to a web application's page in a web 
browser.

We can say that fast, optimized JavaScript will certainly help our applications 
run and perform better, as we learned in previous chapters. But it's important 
to understand that the DOM is just as important to JavaScript performance as 
understanding how to optimize a for loop.



Hands off the DOM

[ 114 ]

In the early days of the Web, we as web developers didn't think about the DOM too 
much. If we think about how far JavaScript has come, we can see that many changes 
have come to the world of web development. If we reminisce about the pre-Google 
days of the web, we know that websites were pretty simplistic, and user interaction 
was mainly limited to hyperlink tags and an occasional JavaScript window.alert() 
function to show some form of application interaction.

As time passed, we encountered Web 2.0, or rather the point where Asynchronous 
JavaScript and XML (AJAX) came into being. If you're not familiar with AJAX, I 
would like to sum it up: AJAX web applications allow developers to pull content 
from external sources, typically XML files, (this is the X in AJAX).

With AJAX, website content suddenly became dynamic, meaning developers didn't 
have to rely on backend technologies to refresh a web page with updated data. 
Suddenly, a need for stronger JavaScript came into play. Businesses and their clients 
no longer wanted to have a website responding with page flashes (or sites that used 
backend technologies to update the page with a POST submission method), all the 
more so with sites such as Google Maps and Gmail seemingly pushing the idea of 
the web as a platform for software rather than a desktop operating system.

Don't we need an MV-whatever library?
Today, we have frameworks that help with the heavy lifting of some of this type of 
application; AngularJS, Backbone.js, Knockout.js, and jQuery are a few libraries that 
come to mind.

For this book, however, we will stick to vanilla JavaScript for two reasons. The first 
reason is that entire books are dedicated to many of these libraries and talk about 
performance and various levels of experience, all of which are good but beyond the 
scope of this book. The second reason is that most developers typically don't need 
these libraries to build a project.

Remember that all the JavaScript libraries mentioned here, as well as those found on 
the Web, are again all JavaScript! For most projects, we shouldn't need a library to 
make a project the way we want to build it; moreover, many of these libraries come 
with extra code.



Chapter 7

[ 115 ]

What I mean by this is that the libraries come with features that might not be needed 
in a given project and, unless a library is modular, it's difficult to use it without 
removing features that aren't needed. This is even harder if you're working in a team 
environment where others may be using a shared library for certain areas of the 
application that may use some features, but not all of them.

We'll look into mobile JavaScript performance later in Chapter 9, Optimizing JavaScript 
for iOS Hybrid Apps. We will find these libraries become even more of a burden. Now 
with that said, let's look at some common ways to break the DOM, and what we can 
do to make it perform better.

Creating new objects using the 
createElement function
Here, we will learn to create new objects using the createElement function along 
with the following three topics:

•	 Working around the createElement function
•	 Working with the createElement function
•	 When to use the createElement function

Working around the createElement function
In JavaScript, we can create new page elements using the document.
createElement() function and text objects to place inside our generated elements 
using the document.createTextNode() function. Typically, creating new elements 
to inject into our DOM can be a bit of a drain on rendering resources as well as 
interaction performance if done with multiple generated elements.



Hands off the DOM

[ 116 ]

Working with the createElement function
Let's test how well the createElement function renders content to a screen. Here's 
our test: we are going to create a table with a lot of data using a for loop. We will 
populate a table cell with a text object with the count of the iteration of our for loop. 
Then, we will look at an alternate version creating the same effect with a different 
code implementation, and compare both. Let's take a look at the first option using 
the createElement function shown as follows:



Chapter 7

[ 117 ]

Here, we have a simple HTML5 page with some formatting CSS styles in the head 
section and an empty placeholder div element on line number 21 with an id set 
as datainsert. On line 25, we have an anonymous function to run as soon as it's 
loaded into the browser; also on line 26, we start a console.time function to start 
counting how long our JavaScript performs. We then create a table element variable 
called tableElem on line 27; on lines 28 through 31, we set some attributes to help 
style the formatting of our table.

Then on line 33, we start our for loop; in the scope of our for loop we create a table 
row element, a table cell element, and a text node to insert text into our generated 
table cell, starting with the cellContent variable on line 35, the tableTr variable on 
line 36, and the tableTd variable on line 37. On lines 39-41, we append the table with 
our generated cell and continue the loop for 10000 times. Lastly, we append the table 
element to our datainsert div element on the page to render our content. Let's run 
this in our browser and see how long it takes for the content to render using Chrome 
Developer tools options.



Hands off the DOM

[ 118 ]

As we can see, this took quite a bit of processing time, roughly 140 milliseconds in 
Chrome, which is a pretty lengthy render. You can consider doing something like 
this in building a messaging client or displaying data from JSON. Whatever the case, 
the cost of using the createElement function is quite large and should only be used 
in small portions.

The other way to generate data on a table like this, but without the use of the 
createElement function, is to use the innerHTML property. This property provides 
a simple way to completely replace the contents of an element and assign values in 
the same manner as assigning value to a variable. When the innerHTML property is 
used, you can change the page's content without refreshing the page. This can make 
your website feel quicker and more responsive to user input. This property can also 
be appended using the += append operator. Knowing this, we can structure our 
code base in a slightly different way. What we are doing is shown in the following 
screenshot:



Chapter 7

[ 119 ]

The layout for this should be pretty similar to our createElement function example. 
On line 21, we have the same datainsert div; on line 25 our Anonymous function 
is started off. Now on line 28, we see something quite different; here, we can see 
the start of a string variable called tableContents, with the start of an HTML table 
with the same properties as that of the preceding example set to it. This is just like 
what we did using the createElement function except that we used just a JavaScript 
string of HTML markup  rather than a DOM object this time.

Next on line 30, we start our for loop and append the tableContents string with an 
appended string adding in our table row and table cell, with the for loop's iteration 
count inserted into the cell, again counting 10,000 times.

When the loop is finished on line 35, we append our string with the closing brackets 
for our table. Finally on line 37 and 38, we use the innerHTML property and write  
our table into the innerHTML property of the datainsert div element. Let's run  
this example in a browser and take a look at its processing time.

This time our table's render time is roughly 40 milliseconds, which is almost four 
times faster than we would get if we used the createElement function. Now that's  
a great speed improvement! And it's even visually faster in Chrome as well.



Hands off the DOM

[ 120 ]

When to use the createElement function?
Though the createElement function is slow, on occasion it can be more helpful in 
generating HTML through a complex layout, where a complex application generates 
many more elements than an innerHTML property can be styled to accommodate.

If this is the case, this is done more for convenience and usability for the 
development team when modifying the element's type rather than for updating a 
full string to fit the needs of the application. In any case, if you need to create HTML 
elements, the innerHTML property is always faster.

Animating elements
One of the more impressive uses of JavaScript came around the Web 2.0 age of 
JavaScript while AJAX was gaining popularity; another interesting idea came about 
in the form of JavaScript animations. These are animations that are created by simply 
iterating over and over an element's styles that are left- and top-positioned using a 
setInterval function, and then dismissing it after the element reached its end point. 
This allows the div to appear to tween or animate on the page itself.

Animating the old-fashioned way
Most JavaScript developers are familiar with doing animations using jQuery, the 
popular DOM manipulation library for JavaScript, using the animate function to 
create DOM animations. But, as we are talking about pure JavaScript in this book, 
let's take a look at an example of how to build this from the ground up. Check out 
the code in the following screenshot:



Chapter 7

[ 121 ]

In this example, I've simply created a WebKit-friendly animation using just 
JavaScript, (meaning this will only display properly in the Google Chrome and 
Apple Safari browsers). On line 7, we set up some basic styles including a black  
dot div element with the id set as dot.



Hands off the DOM

[ 122 ]

Now on line 27 and 28, we declare the dot and i variables respectively. Then, on 
line 31, we create a variable called interval, which is actually a parameter passed to 
the setInterval function. In the case of this code, it's for every millisecond, which 
is shown on line 38. Inside the setInterval function we increment the i variable's 
count by 1, and update the position of the dot element. Finally, when the value of 
the i variable is strictly equal to 450, we dismiss our interval variable using the 
clearInterval function, which stops the setInterval function from processing 
any further. If we look at this, we can see a simple animation tween using pure 
JavaScript in our browser. This is shown in the following screenshot:

Now, you may think that creating a setInterval function in this manner may be 
a cause of concern, and you might be correct. Fortunately, we as developers now 
have an alternative when it comes to creating animations like this for our HTML5 
applications!

Animating using CSS3
Let's rebuild this example using CSS3 and JavaScript only to trigger the animation. 
Again, we will simply style for WebKit-focused browsers, just for simplicity. Let's 
take a look at the updated code sample shown in the following screenshot:



Chapter 7

[ 123 ]

With this example, we can see that our JavaScript has much fewer lines, and that's a 
good thing; it keeps our content styles purely CSS-based rather than styling content 
using JavaScript logic.

Now, on the JavaScript side, we can see that we are using the same kind of 
Anonymous function on line 39, except that we are setting a timeout to trigger the 
dot element to add an active class property that triggers the animation in CSS3. This 
is shown on lines 19 through 30 in our example



Hands off the DOM

[ 124 ]

An unfair performance advantage
In many code examples in this book, I've used console.time, and console.timeEnd 
to review performance, and this example is no exception. You may have noticed that 
I've wrapped each animation example in a time and timeEnd function to measure 
the processing timeAs we can see in the following screenshot, it's a bit one-sided:



Chapter 7

[ 125 ]

As we can see in the preceding screenshot, the JavaScript processing time is roughly 
1,900 milliseconds, and the CSS3 animation is around 0.03 milliseconds. Now, before 
we conclude that the CSS3 method is better, we must bear in mind that we are using 
CSS3 only to render the page, and JavaScript is handling only the trigger of the 
animation. It's still more efficient, but it should be noted that JavaScript handles  
less code.

Now for newer browsers, this is the recommended way of building content 
animations given the performance improvements seen thus far, whether made by 
JavaScript or not. However, some projects require older browser support, where 
projects may not have access to CSS3 transitions and animations, or we're upgrading 
a part of an application's animation while still maintaining compatibility. Here's one 
way of doing just that while using the same JavaScript-based animation as earlier:



Hands off the DOM

[ 126 ]

Here we've modified our initial JavaScript example by updating the position of the 
dot element; however, we've added two CSS lines on lines 17 and 18. The first one is 
a -webkit-transform and translate3d property that only sets the element to not 
change position; in older browsers or non webkit-focused browsers, this property 
will be ignored. But here it's simply setting the position of the element to its initial 
position, which sounds silly, and in a way it is!

What this really does is tell the DOM runtime that this needs to run as a unique 
graphics process; it also tells the graphics processing unit (GPU) on the browser's 
device to draw this element fast! The same can be said for will-change, which is 
a similar property that does the same thing as the translate3d property with the 
exception that it's not updating the position but  simply telling the GPU to redraw 
this element at a very high rate and to expect it to change in the DOM. Now, this 
practice is called adding elements to a composite layer. We will get more into 
composite layers in Chapter 9, Optimizing JavaScript for iOS Hybrid Apps. But for now, 
this is what we are doing here; this way, newer browsers can still get some visual 
speed improvements using legacy JavaScript animations.

Understanding paint events
Paint events are DOM events that cause a web browser to paint the web page as the 
DOM is updated with JavaScript. For browsers with low memory, this can be a bit of 
an issue as paint events take a sizable amount of processing and graphics rendering 
to show updates in large quantities.

How to check for paint events?
Typically, paint events can be found in your Web Inspector's timeline view. Since 
paint events are displayed chronologically during a page's execution in a web 
browser, these appear slightly differently in Chrome's Developer tools options.



Chapter 7

[ 127 ]

Open Chrome's Developer tools options and click the drawer icon (it's the icon next 
to the gear icon on the upper right of the Developer tools options). Next, open the 
Rendering tab in the drawer, and click Show paint rectangles option. Once that's 
finished, refresh the page. We will see the page highlighted green in various areas as 
the page loads. These are paint events in action as they are loaded on screen. Here's 
an example using our animation and showing paint rectangles enabled in Chrome's 
Developer tools options:

Notice how the green square appears on page load and again when the animation 
finishes. This happens because the DOM only repaints the browser window on page 
load or when an animation ends.

Occasionally, projects can create pretty complex animations using JavaScript alone. 
To spot errors with our JavaScript logic and ensure that a paint event isn't causing an 
issue, we can use the continuous page repainting feature inside Chrome's Developer 
tools.



Hands off the DOM

[ 128 ]

Testing paint events
To test this, we've set up a JavaScript animation with a built-in bug as shown here:

Much of this should seem pretty similar to earlier animations we've built in this 
chapter. But if we take a look at lines 35 through 38, we can see that we have a 
conditional else if statement checking to see if our increment variable i is within 
the 250-258 range count; if so, the left style is removed from the dot element.

When we run this, we should encounter a flicker right the animation hits this point. 
We can verify whether this is truly a JavaScript issue by enabling continuous page 
repainting in Chrome's Developer tools.



Chapter 7

[ 129 ]

To do this, open the Developer tools options, open the drawer, and click the 
Rendering tab in the drawer. Then we can check the Enable continuous page 
repainting and Show paint rectangles options. When we do this, our web page 
should show a green overlay and display an information box in the upper right  
of our browser window. This is shown in the following screenshot:

Now, when we reload the page and the animation is replayed, our dot element 
should show a green box drawn around it during the whole animation this time. 
This is Chrome forcing the page to constantly redraw as the animation updates. As 
we can see, the box is still on the dot even when we hit our premade bug, indicating 
a JavaScript issue. If this was a true paint issue, the box would disappear when a 
redraw issue occurs.

Pesky mouse scrolling events
Paint events (or a lack thereof) are not the only issues when it comes to web 
application performance when you're working with JavaScript. Scrolling events 
applied to a browser window or document can cause havoc on an application; it's 
never a good idea to continuously trigger events by scrolling a mouse, let alone 
multiple events.



Hands off the DOM

[ 130 ]

If we're coding an application, we know whether our application has one or many 
events added. But if we are handed a web application to update, there is a tool in 
Chrome's Developer tools that lets us visually check for scroll events.

Let's create a quick example to show how this feature works and what it looks for 
when trying to optimize the DOM interface. For this, I've created a mousewheel event 
that will capture the X and Y coordinates of a mouse pointer's position with respect 
to the page, and print that to an input field with an id set as txtfield; it will trigger 
every time I move the mouse wheel. Let's take a look at the following code sample:

We can see here that the page itself is pretty light but, on line 23, we can see 
the mousewheel event listener in play adding a continuous event using the 
getMouseLocation function on line 26. Then on line 27, our input field with an id of 
txtfield is assigned a string with the mouse event information, grabbing the mouse 
pointer's X and Y coordinates and applying it to the value of txtfield. Now let's see 
Developer tools highlight performance issues with scrolling.

Open up the drawer, open the Rendering tab, and then click Show potential scroll 
bottlenecks. This will highlight the block areas that have scroll events assigned in 
JavaScript; here's what our example looks like with the filter enabled:



Chapter 7

[ 131 ]

Now, this by itself isn't too bad when it comes to performance, but applications 
with multiple mouse movement events can potentially cause issues, even more so if 
the movement areas overlap. If we add the same event listener to the text area and 
remove the listener from the document, will we see multiple instances of the scroll 
listener showing in our Developer tools filter? Let's find it out by looking at the 
output of the final example file for this chapter, 07_08.html:



Hands off the DOM

[ 132 ]

Nope! As we can see, even when a mousewheel event is enabled on a single element, 
the entire page becomes highlighted. As the mousewheel event can be checked at the 
top of the DOM, the whole page is affected even if an application focuses only on one 
small element for a mousewheel event.

So it's important to keep in mind mousewheel events, as they can potentially slow 
down your page's performance.

Summary
In this chapter, we covered how JavaScript can affect the DOM's performance; 
we reviewed the createElement function and learned how to better write our 
JavaScript to optimize generating elements from code.

We also reviewed JavaScript animations, and compared their performance to 
modern CSS3 animations. We also learned how to optimize existing or legacy 
JavaScript animations.

Lastly, we reviewed paint events in the DOM and saw how the DOM redraws its 
content after JavaScript manipulates it; we also covered mousewheel events and saw 
how they can potentially slow down the DOM.

In the next chapter, we will take a look at JavaScript's new best friend for 
performance: web workers, and how we can make JavaScript perform like a 
multithreaded application.



[ 133 ]

Web Workers and Promises
In the previous chapters, we addressed some common performance issues 
while dealing with common JavaScript issues that come up in general JavaScript 
development. Now, we come to the point where, assuming that our projects can 
support newer JavaScript features, we can make our code perform even better  
than before.

This is where web workers and promises come into play. In this chapter, we will 
take a look at both and see how and when to use them. We will also discover their 
limitations and understand their benefits in terms of high-performance JavaScript.

Understanding the limitations first
Before diving into web workers and promises, we need to understand a concern  
with the JavaScript language itself. As mentioned in past chapters, JavaScript is 
single-threaded and cannot support two or more methods running at the same time.

For many years, we as JavaScript developers never really had to concern ourselves 
with threading, let alone the JavaScript memory issues that we have covered in the 
course of this book. Most of our code existed inside a browser, and ran on the same 
page either inline, or linked externally to a file on the same server, for basic web  
page functionality.

As the Web moves forward, with originally frontend coding becoming more and 
more necessary for high-performing applications, newer ways of handling larger 
JavaScript applications are needed. Today, we consider these newer features as a 
part of the ECMAScript 5 feature set.

In ECMAScript 5, many of these features were rolled into what many consider to be 
the HTML5 stack. This stack consists of HTML5 (the DOCTYPE and HTML tags), CSS 
version 3.0, and ECMAScript 5.



Web Workers and Promises

[ 134 ]

These technologies make the Web much more powerful than the days of AJAX and 
XHTML development. The limitation is that these features are cutting-edge and may 
or may not work with every browser. So, using these newer features usually requires 
a bit for forethought before their implementation in a project.

We've talked about some of these features since Chapter 2, Increasing Code Performance 
with JSLint, including the use strict statement, which forces the browser to throw 
an error if something in JavaScript isn't strictly written or coded correctly. Now 
you may ask why we are using the use strict statement if it isn't supported in all 
browsers. The trick with the use strict statement is that, when it's coded for an 
older browser, it shows up as a string and is ignored.

This is a great thing because, even if it is ignored in older browsers, we can still use 
this newer feature and write more efficient code. Unfortunately, that doesn't translate 
to all features in ECMAScript 5; this includes web workers and promises.

So in this chapter, let's  keep in mind that henceforth, while working with code 
samples, we need to focus our testing and coding on a newer browser such as Google 
Chrome, Opera, Firefox, or Apple's Safari, and even newer versions of Internet 
Explorer that follow the same standards.

Web workers
Web workers give JavaScript developers like us a way to build multi-threaded 
JavaScript applications; this works in newer browsers as we have an object called a 
worker. A worker object is simply an external JavaScript file that we pass logic to.

Now, this may seem a little odd. Haven't we worked with external JavaScript files, 
since the beginning of JavaScript? Fair enough, but web workers are a bit new in 
terms of how a browser handles the execution of files in the DOM. Let's take a  
look at the following sample diagram on how a browser reads a file:



Chapter 8

[ 135 ]

So here we have a single-threaded JavaScript application, a DOMContentLoaded 
event, and a window.onload event triggering shortly after, followed by the functions 
simply named as: function1, function2, function3 respectively. Now, what if we 
had the function2() function perform some complex for loop such as calculating 
pi 5 million times while console.log(Shakespeare) is checking the time? Well, we 
can see that in the following diagram:

As we can see, once the browser calls function2(), it locks up and hangs until it 
can complete its execution, (assuming that the system running the code has enough 
memory to execute). Now an easy way to fix this would be to say, "Hey, maybe we 
don't need to check the time, or maybe we only want to calculate pi once to improve 
performance.". But what if we had no choice but to write code that way? Maybe our 
application had to work like that, and so we were obliged to code a complicated, 
slow-performing function that did slow performance; for the success of the 
application, that function with that logic must fire.

Well, if we must build an application like that, our solution is a web worker. Let's see 
how that works in comparison to our single-threaded diagrams:



Web Workers and Promises

[ 136 ]

In our example here, we can see in the diagram that we create a new worker that 
points to an external JavaScript worker file called worker.js. That worker sends a 
response in the form of a message. With web workers, messages are how we pass 
data between the host script and the worker data. It works in a similar way to any 
other event in JavaScript using the onmessage event.

So how does this look in a coded application? Well, let's find out!

We have a coded example shown in the following screenshot that is built in a similar 
way to the preceding diagrams:



Chapter 8

[ 137 ]

As we can see, this is a simple HTML5 page with a script tag on line 11. On line 13, 
we have function1() declared first, which prints an info message to the console; 
with line 15, we start a new timer to see how fast our worker is. It's rightly called  
a Worker.

Next up, on line 18 we declare function2(); now here is where the things get 
interesting. First, on line 19, we declare a variable called func2_Worker; the naming 
of this variable isn't important, but it's always a good idea to indicate what your 
variable actually is. In this case, I add the suffix _Worker to the variable, following 
which I create a new web worker using the Worker keyword with a capital W.

Inside the parentheses, we add a string, the filename, using the relative path of our 
worker file, named 08_01-worker.js. Let's take a look inside the worker file.

As we can see, the worker file is very simple. We have a global object declared on 
line 1 called onmessage and that is assigned a function with a for loop. It's also 
worth noting that we can refer to this context through the self and this keywords 
(example: self.onmessage). You may have noticed that we also have a parameter 
called oEvent, which is a placeholder for any data being passed into the worker that 
we call using the data property. We can see this in our postMessage function on  
line 3.



Web Workers and Promises

[ 138 ]

The postMessage function is a built-in function for ECMAScript that either sends 
data to an assigned worker or, if no worker is assigned, it posts a message back 
to any parent JavaScript workers that might be listening. Now let's go back to our 
root HTML page script and take a look on line 20; this is shown in the following 
screenshot:

We can see that, by calling our func2_Worker worker variable, we can use the 
onmessage property of that worker and call a function back on our root page; in this 
case, you need to log a message back to the console using the oEvent parameter used 
in the worker.

That's all well and good. But how do we pass data in? Well, that's easy enough. Line 
24 uses the func2_Worker variable but utilizes the postMessage function for that 
worker object, as mentioned earlier. As we've assigned a worker variable to this 
postMessage function, this will pass in a data parameter into our oEvent parameter 
used in our worker.js file; in this case, it's a string that says, "Processing a high 
performance JavaScript worker...".



Chapter 8

[ 139 ]

Finally, on line 32 and again on line 35, we have 2 event listeners. One is for the 
DOMContentLoaded event that was shown in our diagram as the first function called 
in our execution thread and that simply outputs a log message that the DOM is 
loaded; this is followed by our window.onload function, which also prints a log 
message, But then it also triggers functions 1, 2, and 3, in order when the page is 
loaded. Let's load this in our browser and see what happens by using Chrome's 
Developer tools option. Take a look at the output in the Console panel, which  
will resemble the following screenshot:

Well, that's not a good sign as we can see an error appear in our console. The DOM 
Loaded and Page Loaded log messages appear as does function1(): Called. after 
which we get the Uncaught SecurityError: Failed to construct 'Worker': 
Script at (file:url) cannot be accessed from origin 'null' error message.

Now what does that mean? First, we have to understand that using a web worker is 
similar to working with AJAX. If your code is not on a server, there is a security risk 
in sharing or gathering data across your system. Now this isn't incorrect but, when 
testing our code, we need to test on a local server such as Apache or IIS that can 
secure our content using HTTP. In Chrome, there is also another way to disable this 
warring, but that's only for limited testing.



Web Workers and Promises

[ 140 ]

Testing workers with a local server
A local server can be created on OS X and Linux quickly using Python; now, if you're 
not a Python guru, don't worry as this is a quick one-line bit of Terminal code to spin 
up a server in seconds.

First, open the Terminal and set its path; this should be the path your files are in.  
You can do this by using the change directory command or cd. Here's an example  
of setting the path to the active user's desktop using the tilde key:

cd ~/Desktop

Once that's done, we can start the server with this simple one-line python command 
that calls a built-in simple server method, as follows:

python -m SimpleHTTPServer

Once we press the Enter key, we can start the server. We can look at the server root 
by typing http://127.0.0.1:8000 into Chrome; we should then see a list of files to 
access. Also, should you need to close the server, you can exit out of the Terminal or 
use CTRL + Z to kill the server manually.

Now go ahead and open the HTML file in which the worker script is called, from the 
.js file, in the page. We should then see the Console panel in Chrome's Developer 
tools show one thousand lines iterating through our "for loop" from our worker 
JavaScript file.

We can also see that, on the fifth console line, the console.timeEnd function stops 
for about 0.5 milliseconds, showing that it's been called prior to processing the loop. 
This is  shown in the following screenshot:



Chapter 8

[ 141 ]

Before we move on, let's check how long this would process outside a worker in the 
next code sample. We've recreated the logic for the loop in the page itself without 
using a web worker. We are still using the console.time function to test how long 
the thread runs until function3() is triggered. Let's take a look at the following 
code and review it:



Web Workers and Promises

[ 142 ]

So, on line 19, we've removed the reference to the worker file, which is a .js file, and 
moved the for loop into the page. Here it will loop one thousand times and print 
to the console. Now on line 32, we have our window.load event listener, and we 
sequentially call our functions as 1, 2, and 3.

We then again use the console.time function to track how long a process occurs. 
As this code sample is now single-threaded, we should see a longer time for the 
timeEnd function to fire. Let's run our code and take a look at the next screenshot:

That's not bad! Here, our time is much longer than our multi-threaded Worker 
example, which is roughly 70 milliseconds slower than our web worker. That's not 
a bad performance boost; it's minor but still helpful. Now, one issue with workers is 
that they take a lot of time to trigger the next function that exists on a separate thread 
from the main thread. We need to have some way to call a function when a function 
completes asynchronously, and for that we have JavaScript promises.

Promises
JavaScript promises are also a new way to optimize our JavaScript code; the idea of 
promises is you have a function that is chained to a main function, and is fired in 
sequential order as it's written. Here is how it's structured. First, we create a new 
object using the Promise object, and, inside the parentheses, we write the main 
function, and assign the new promise object to a variable.

One thing to note before continuing is that JavaScript promises are EcmaScript  
6- specific. So, for this section, we will need to test our code in an EcmaScript 6-ready 
browser such as Google Chrome.



Chapter 8

[ 143 ]

Next, with our promise variable, we use the then keyword, which in actuality works 
just like a function. But it only fires when our root promise function is completed. 
Also, we can chain the then keywords one after another and sequentially fire 
JavaScript asynchronously to ensure that the variables scoped in our promise will,  
of course, promise to the next then function that those variables will have set values. 
Let's take a look at a sample promise and see how this works:

In our code sample, we have an HTML5 page with an embedded script tag. We 
have two elements on our page that we interact with or view using a button tag 
with the makeAPromise() function as an attached onclick event on line 13. On line 
15, we have a div tag with an id of results, with its inner HTML left empty.



Web Workers and Promises

[ 144 ]

Next, on line 19 we create our makeAPromise function and set a count variable on 
line number 20 called promiseCount. Now here's where we create our promise. 
On line number 22, we create a variable called promiseNo1, and we assign it with a 
new Promise object. Here you can notice how we start opening the parenthesis with 
a function as parameter that starts on line 23, and we have a resolve parameter 
inside that function. We'll discuss that later.

In our Promise function, we have a simple for loop that multiplies the value from 
the for loop by 5, and the then function assigns it to our promiseCount variable. 
To finish our Promise object's function, notice a new type of keyword, resolve! The 
resolve keyword is a type of return used specifically for promises; it sets a promise's 
return value. There are also other promise return types such as reject, which allows 
us to return a failed value if we want. For this example, however, we are keeping it 
simple and only using resolve.

Now, if you remember on line 23, our Promise function had an internal function 
with the resolve parameter. Though this may look a little odd, it is required to make 
our promise work; by adding resolve to our function, we are telling our promise 
that we need to use the resolve function inside our Promise function. For example, 
if we needed resolve and reject, we would write it as function (resolve, 
revoke) {}.

Back on line 29, we assign our resolve with a string that outputs our value with 
some copy to fill our div, but we don't assign the innerHTML property here; that's 
done using our promiseNo1.then function. This works like a function that follows 
the promise's resolve function.

Finally on line 32, we call our promiseNo1 variable's instance, use the then function, 
and again wrap the parenthesis with its own internal function. We may notice that, 
on line 33, we've passed in an argument called promiseCount. This is our resolve 
value that ended our Promise function declared on line 22. We then use that again in 
line 33, where we assign our results div element with its innerHTML property.

Testing a true asynchronous promise
For this simple example, we can see how a promise is structured and how each firing 
is needed when chained; when we chain promises, we can see how a promise can 
still fire a chained function even when we create a bit of single-threaded JavaScript 
code that causes a delay in execution.  In this case, it's a setTimeout function; let's 
take a look at this new code sample shown in the following screenshot:



Chapter 8

[ 145 ]

For this simple example, we can see how promise chains function without breaking 
the thread. Here, we set a timerCount variable on line 20; then we will print to an 
empty results div element found on line 15. Next, by reusing our promiseNo1 
variable with its own promise instance, we create a for loop that randomizes the 
timerCount using Math.random(), which allows a random number to be generated 
and then multiplied to 10000 in the for loop when it finishes.



Web Workers and Promises

[ 146 ]

Lastly, we use the resolve function to return our promise, which is chained to our 
then function on line 31; here we have an argument called response to serve as our 
resolve function's value. Now on line 33, we have a variable called totalCount, 
where we have the response argument and the timerCount function added together.

Next, we create a setTimeout function that appends the results div element with 
a second line, printing the amount of time set by the totalCountvariable variable 
declared by us, while still using the timerCount function as our timeout value. 
Now, the last part of our chain is another then function on line number 40. Here, we 
append the results div element again, but you need to note that we are printing 
from our second chained then function. Let's take a look at how that works in 
Chrome, as shown in the following screenshot:

Take a look at the output. Here, we can see that, with each button click, we get a 
numeric count for each point of the promise chain. We have a value of 0 on the 
First count, and a random larger number on the Third count. Wait! Is that the 
third count? Yes, note that the third count comes after first; this demonstrates that, 
even when we were waiting for our for loop to process, the third promise continued.



Chapter 8

[ 147 ]

On the next line, we see an even larger number value with the Second count noted 
in our line; if we continue clicking the button, we should see a consistent pattern. 
Using promises can help us multi-thread code as long as we don't need a specific 
value in the chain immediately. We also get performance benefits by moving some  
of our code off our main JavaScript thread using promises.

Summary
In this chapter, we reviewed how to use web workers, and the limitations web 
workers have technically and conceptually in a real-life application. We also worked 
with JavaScript promises, where we learned common keywords related to promises 
such as respond and revoke. We saw how to use the then function to chain our 
promises in sync with our main application thread, to create a multi-threaded 
JavaScript function.

In the next chapter, we will see how working from a mobile device such as iOS and 
Android can affect our performance and how to debug performance on a device.





[ 149 ]

Optimizing JavaScript for iOS 
Hybrid Apps

In this chapter, we are going to take a look at the process of optimizing JavaScript 
for iOS web apps (also known as hybrid apps). We will take a look at some common 
ways of debugging and optimizing JavaScript and page performance, both in a 
device's web browser and a standalone app's web view.

Also, we'll take a look at the Apple Web Inspector and see how to use it for iOS 
development. Finally, we will also gain a bit of understanding about building a 
hybrid app and learn the tools that help to better build JavaScript-focused apps for 
iOS. Moreover, we'll learn about a class that might help us further in this.

We are going to learn about the following topics in the chapter:

•	 Getting ready for iOS development
•	 iOS hybrid development

Getting ready for iOS development
Before starting this chapter with Xcode examples and using iOS Simulator in a 
JavaScript performance book, I will be displaying some native code and will use 
tools that haven't been covered in this course. Mobile app developments, regardless 
of platform, are books within themselves. When covering the build of the iOS 
project, I will be briefly going over the process of setting up a project and writing 
non-JavaScript code to get our JavaScript files into a hybrid iOS WebView for 
development. This is essential due to the way iOS secures its HTML5-based apps. 
Apps on iOS that use HTML5 can be debugged, either from a server or from an app 
directly, as long as the app's project is built and deployed in its debug setting on a 
host system (meaning the developers machine).



Optimizing JavaScript for iOS Hybrid Apps

[ 150 ]

Readers of this book are not expected to know how to build a native app from the 
beginning to the end. And that's completely acceptable, as you can copy-and-paste, 
and follow along as I go. But I will show you the code to get us to the point of testing 
JavaScript code, and the code used will be the smallest and the fastest possible to 
render your content.

All of these code samples will be hosted as an Xcode project solution of some type 
on Packt Publishing's website, but they will also be shown here if you want to follow 
along, without relying on code samples. Now with that said, lets get started…

iOS hybrid development
Xcode is the IDE provided by Apple to develop apps for both iOS devices and 
desktop devices for Macintosh systems. As a JavaScript editor, it has pretty basic 
functions, but Xcode should be mainly used in addition to a project's toolset for 
JavaScript developers. It provides basic code hinting for JavaScript, HTML, and CSS, 
but not more than that.

To install Xcode, we will need to start the installation process from the Mac App 
Store. Apple, in recent years, has moved its IDE to the Mac App Store for faster 
updates to developers and subsequently app updates for iOS and Mac applications. 
Installation is easy; simply log in with your Apple ID in the Mac App Store and 
download Xcode; you can search for it at the top or, if you look in the right rail 
among popular free downloads, you can find a link to the Xcode Mac App Store 
page. Once you reach this, click Install as shown in the following screenshot:



Chapter 9

[ 151 ]



Optimizing JavaScript for iOS Hybrid Apps

[ 152 ]

It's important to know that, for the sake of simplicity in this chapter, we will not 
deploy an app to a device; so if you are curious about it, you will need to be actively 
enrolled in Apple's Developer Program. The cost is 99 dollars a year, or 299 dollars 
for an enterprise license that allows deployment of an app outside the control of the 
iOS App Store.

If you're curious to learn more about deploying to a device, the code in this chapter 
will run on the device assuming that your certificates are set up on your end.

For more information on this, check out Apple's iOS Developer Center 
documentation online at https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/
Introduction.html#//apple_ref/doc/uid/TP40012582.

Once it's installed, we can open up Xcode and look at the iOS Simulator; we can 
do this by clicking XCode, followed by Open Developer Tool, and then clicking 
on iOS Simulator. Upon first opening iOS Simulator, we will see what appears to 
be a simulation of an iOS device, shown in the next screenshot. Note that this is a 
simulation, not a real iOS device (even if it feels pretty close).

A neat trick for JavaScript developers working with local HTML files outside an app 
is that they can quickly drag-and-drop an HTML file. Due to this, the simulator will 
open the mobile version of Safari, the built-in browser for iPhone and iPads, and 
render the page as it would do on an iOS device; this is pretty helpful when testing 
pages before deploying them to a web server.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40012582
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40012582
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40012582


Chapter 9

[ 153 ]

Setting up a simple iOS hybrid app
JavaScript performance on a built-in hybrid application can be much slower than the 
same page run on the mobile version of Safari. To test this, we are going to build a 
very simple web browser using Apple's new programming language Swift. Swift is 
an iOS-ready language that JavaScript developers should feel at home with.

Swift itself follows a syntax similar to JavaScript but, unlike JavaScript, variables 
and objects can be given types allowing for stronger, more accurate coding. In that 
regard, Swift follows syntax similar to what can be seen in the ECMAScript 6 and 
TypeScript styles of coding practice. If you are checking these newer languages out,  
I encourage you to check out Swift as well.

Now let's create a simple web view, also known as a UIWebView, which is the class 
used to create a web view in an iOS app. First, let's create a new iPhone project; we 
are using an iPhone to keep our app simple. Open Xcode and select the Create new 
XCode project project; then, as shown in the following screenshot, select the Single 
View Application option and click the Next button.



Optimizing JavaScript for iOS Hybrid Apps

[ 154 ]

On the next view of the wizard, set the product name as JS_Performance, the 
language to Swift, and the device to iPhone; the organization name should autofill 
with your name based on your account name in the OS. The organization identifier is 
a reverse domain name unique identifier for our app; this can be whatever you deem 
appropriate. For instructional purposes, here's my setup:

Once your project names are set, click the Next button and save to a folder of your 
choice with Git repository left unchecked. When that's done, select Main.storyboard 
under your Project Navigator, which is found in the left panel. We should be in  
the storyboard view now. Let's open the Object Library, which can be found in  
the lower-right panel in the subtab with an icon of a square inside a circle.



Chapter 9

[ 155 ]

Search for Web View in the Object Library in the bottom-right search bar, and then 
drag that to the square view that represents our iOS view.

We need to consider two more things before we link up an HTML page using  
Swift; we need to set constraints as native iOS objects will be stretched to fit  
various iOS device windows. To fill the space, you can add the constraints by 
selecting the UIWebView object and pressing Command + Option + Shift + = on  
your Mac keyboard. Now you should see a blue border appear briefly around  
your UIWebView.



Optimizing JavaScript for iOS Hybrid Apps

[ 156 ]

Lastly, we need to connect our UIWebView to our Swift code; for this, we need to 
open the Assistant Editor by pressing Command + Option + Return on the keyboard. 
We should see ViewController.swift open up in a side panel next to our Storyboard. 
To link this as a code variable, right-click (or option-click the UIWebView object) 
and, with the button held down, drag the UIWebView to line number 12 in the 
ViewController.swift code in our Assistant Editor. This is shown in the following 
diagram:

Once that's done, a popup will appear. Now leave everything the same as it 
comes up, but set the name to webview; this will be the variable referencing our 
UIWebView. With that done, save your Main.storyboard file and navigate to your 
ViewController.swift file.

Now take a look at the Swift code shown in the following screenshot, and copy it 
into the project; the important part is on line 19, which contains the filename and 
type loaded into the web view; which in this case, this is index.html.



Chapter 9

[ 157 ]

Now obviously, we don't have an index.html file, so let's create one. Go to File and 
then select New followed by the New File option. Next, under iOS select Empty 
Application  and click Next to complete the wizard. Save the file as index.html and 
click Create. Now open the index.html file, and type the following code into the 
HTML page:

<br />Hello <strong>iOS</strong>

Now click Run (the play button in the main iOS task bar), and we should see our 
HTML page running inside our own app, as shown here:



Optimizing JavaScript for iOS Hybrid Apps

[ 158 ]

That's nice work! We built an iOS app with Swift (even if it's a simple app). Let's 
create a structured HTML page; we will override our Hello iOS text with the HTML 
shown in the following screenshot:

Here, we use the standard console.time function and print a message to our 
UIWebView page when finished; if we hit Run in Xcode, we will see the Loop 
Completed message on load. But how do we get our performance information? How 
can we get our console.timeEnd function code on line 14 on our HTML page?

Using Safari Web Inspector for JavaScript 
performance
Apple does provide a Web Inspector for UIWebViews, and it's the same inspector 
for desktop Safari. It's easy to use, but has an issue: the inspector only works on iOS 
Simulators and devices that have started from an Xcode project. This limitation is 
due to security concerns for hybrid apps that may contain sensitive JavaScript code 
that could be exploited if visible.



Chapter 9

[ 159 ]

Let's check our project's embedded HTML page console. First, open desktop Safari 
on your Mac and enable developer mode. Launch the Preferences option. Under the 
Advanced tab, ensure that the Show develop menu in menu bar option is checked, 
as shown in the following screenshot:

Next, let's rerun our Xcode project, start up iOS Simulator and then rerun our page. 
Once our app is running with the Loop Completed result showing, open desktop 
Safari and click Develop, then iOS Simulator, followed by index.html. 



Optimizing JavaScript for iOS Hybrid Apps

[ 160 ]

If you look closely, you will see iOS simulator's UIWebView highlighted in blue 
when you place the mouse over index.html; a visible page is seen as shown in the 
following screenshot:

Once we release the mouse on index.html, we Safari's Web Inspector window 
appears featuring our hybrid iOS app's DOM and console information. The Safari's 
Web Inspector is pretty similar to Chrome's Developer tools in terms of feature sets; 
the panels used in the Developer tools also exist as icons in Web Inspector.



Chapter 9

[ 161 ]

Now let's select the Console panel in Web Inspector. Here, we can see our full 
console window including our Timer console.time function test included in the 
for loop. As we can see in the following screenshot, the loop took 0.081 milliseconds 
to process inside iOS.

Comparing UIWebView with Mobile Safari
What if we wanted to take our code and move it to Mobile Safari to test? This is easy 
enough; as mentioned earlier in the chapter, we can drag-and-drop the index.html 
file into our iOS Simulator, and then the OS will open the mobile version of Safari 
and load the page for us.

With that ready, we will need to reconnect Safari Web Inspector to the iOS 
Simulator and reload the page. Once that's done, we can see that our console.time 
function is a bit faster; this time it's roughly 0.07 milliseconds, which is a full .01 
milliseconds faster than UIWebView, as shown here:



Optimizing JavaScript for iOS Hybrid Apps

[ 162 ]

For a small app, this is minimal in terms of a difference in performance. But, as an 
application gets larger, the delay in these JavaScript processes gets longer and longer.

We can also debug the app using the debugging inspector in the Safari's Web 
Inspector tool. Click Debugger in the top menu panel in Safari's Web Inspector. 
We can add a break point to our embedded script by clicking a line number and 
then refreshing the page with Command + R. In the following screenshot, we can see 
the break occurring on page load, and we can see our scope variable displayed for 
reference in the right panel:

We can also check page load times using the timeline inspector. Click Timelines at 
the top of the Web Inspector and now we will see a timeline similar to the Resources 
tab found in Chrome's Developer tools. Let's refresh our page with Command + R on 
our keyboard; the timeline then processes the page.

Notice that after a few seconds, the timeline in the Web Inspector stops when the 
page fully loads, and all JavaScript processes stop. This is a nice feature when you're 
working with the Safari Web Inspector as opposed to Chrome's Developer tools.



Chapter 9

[ 163 ]

Common ways to improve hybrid 
performance
With hybrid apps, we can use all the techniques for improving performance that 
we've learned in the past chapters: using a build system such as Grunt.js or Gulp.js 
with NPM, using JSLint to better optimize our code, writing code in an IDE to create 
better structure for our apps, and helping to check for any excess code or unused 
variables in our code.

We can use best performance practices such as using strings to apply an HTML page 
(like the innerHTML property) rather than creating objects for them and applying 
them to the page that way, and so on.



Optimizing JavaScript for iOS Hybrid Apps

[ 164 ]

Sadly, the fact that hybrid apps do not perform as well as native apps still holds true. 
Now, don't let that dismay you as hybrid apps do have a lot of good features! Some 
of these are as follows:

•	 They are (typically) faster to build than using native code
•	 They are easier to customize
•	 They allow for rapid prototyping concepts for apps
•	 They are easier to hand off to other JavaScript developers rather than finding 

a native developer
•	 They are portable; they can be reused for another platform (with some 

modification) for Android devices, Windows Modern apps, Windows Phone 
apps, Chrome OS, and even Firefox OS

•	 They can interact with native code using helper libraries such as Cordova

At some point, however, application performance will be limited to the hardware of 
the device, and it's recommended you move to native code. But, how do we know 
when to move? Well, this can be done using Color Blended Layers. The Color 
Blended Layers option applies an overlay that highlights slow-performing areas 
on the device display, for example, green for good performance and red for slow 
performance; the darker the color is, the more impactful will be the performance result.

Rerun your app using Xcode and, in the Mac OS toolbar for iOS Simulator, select 
Debug and then Color Blended Layers. Once we do that, we can see that our iOS 
Simulator shows a green overlay; this shows us how much memory iOS is using to 
process our rendered view, both native and non-native code, as shown here:

Currently, we can see a mostly green overlay with the exception of the status bar 
elements, which take up more render memory as they overlay the web view and 
have to be redrawn over that object repeatedly.



Chapter 9

[ 165 ]

Let's make a copy of our project and call it JS_Performance_CBL, and let's update 
our index.html code with this code sample, as shown in the following screenshot:

Here, we have a simple page with an empty div; we also have a button with 
an onclick function called start. Our start function will update the height 
continuously using the setInterval function, increasing the height every 
millisecond. Our empty div also has a background gradient assigned to it  
with an inline style tag.

CSS background gradients are typically a huge performance drain on mobile devices 
as they can potentially re-render themselves over and over as the DOM updates 
itself. Some other issues include listener events; some earlier or lower-end devices 
do not have enough RAM to apply an event listener to a page. Typically, it's a good 
practice to apply onclick attributes to HTML either inline or through JavaScript.



Optimizing JavaScript for iOS Hybrid Apps

[ 166 ]

Going back to the gradient example, let's run this in iOS Simulator and enable Color 
Blended Layers after clicking our HTML button to trigger the JavaScript animation.

As expected, our div element that we've expanded now has a red overlay indicating 
that this is a confirmed performance issue, which is unavoidable. To correct this, we 
would need to remove the CSS gradient background, and it would show as green 
again. However, if we had to include a gradient in accordance with a design spec,  
a native version would be required.

When faced with UI issues such as these, it's important to understand tools beyond 
normal developer tools and Web Inspectors, and take advantage of the mobile 
platform tools that provide better analysis of our code. Now, before we wrap  
this chapter, let's take note of something specific for iOS web views.

The WKWebView framework
At the time of writing, Apple has announced the WebKit framework, a first-
party iOS library intended to replace UIWebView with more advanced and better 
performing web views; this was done with the intent of replacing apps that rely  
on HTML5 and JavaScript with better performing apps as a whole.



Chapter 9

[ 167 ]

The WebKit framework, also known in developer circles as WKWebView, is a 
newer web view that can be added to a project. WKWebView is also the base class 
name for this framework. This framework includes many features that native iOS 
developers can take advantage of. These include listening for function calls that can 
trigger native Objective-C or Swift code. For JavaScript developers like us, it includes 
a faster JavaScript runtime called Nitro, which has been included with Mobile Safari 
since iOS6.

Hybrid apps have always run worse that native code. But with the Nitro JavaScript 
runtime, HTML5 has equal footing with native apps in terms of performance, 
assuming that our view doesn't consume too much render memory as shown  
in our color blended layers example.

WKWebView does have limitations though; it can only be used for iOS8 or higher 
and it doesn't have built-in Storyboard or XIB support like UIWebView. So, using 
this framework may be an issue if you're new to iOS development. Storyboards 
are simply XML files coded in a specific way for iOS user interfaces to be rendered, 
while XIB files are the precursors to Storyboard. XIB files allow for only one view 
whereas Storyboards allow multiple views and can link between them too.

If you are working on an iOS app, I encourage you to reach out to your iOS 
developer lead and encourage the use of WKWebView in your projects.

For more information, check out Apple's documentation of WKWebView at their 
developer site at https://developer.apple.com/library/IOs/documentation/
WebKit/Reference/WKWebView_Ref/index.html.

Summary
In this chapter, we learned the basics of creating a hybrid-application for iOS using 
HTML5 and JavaScript; we learned about connecting the Safari Web Inspector to our 
HTML page while running an application in iOS Simulator. We also looked at Color 
Blended Layers for iOS Simulator, and saw how to test for performance from our 
JavaScript code when it's applied to device-rendering performance issues.

Now we are down to the wire. As for all JavaScript web apps before they go live 
to a production site, we need to smoke-test our JavaScript and web app code and 
see if we need to perform any final improvements before final deployment. This is 
discussed in the next chapter.

https://developer.apple.com/library/IOs/documentation/WebKit/Reference/WKWebView_Ref/index.html
https://developer.apple.com/library/IOs/documentation/WebKit/Reference/WKWebView_Ref/index.html




[ 169 ]

Application Performance 
Testing

In this book, we've covered various ways of increasing our JavaScript's application 
performance at different stages of a project's life cycle. This includes activities 
ranging from choosing a proper editor at various stages in a project's lifespan, 
incorporating JavaScript linters to help proof our JavaScript before deployment to 
using build systems, and creating a deployment package or build separating final 
code from the developer-friendly code base.

The real secret in crafting high performing JavaScript is not the amount of JavaScript 
knowledge in our heads, but knowing the key "pain points" of the language itself; 
some of these pain points are the for loops, object creation, not incorporating strict 
operators, timers, and so on. Moreover, this category also includes incorporating 
these tools to better check our code before it is deployed.

Like all major web application projects, there is always some form of pre-flight check 
here, a final list of to-dos before a web application goes live. If we incorporate the 
tools covered in this book to this point, our JavaScript should be solid enough for 
deployment. But here, we will take it one step further.

In this chapter, we are going to take a look at Jasmine, a JavaScript testing 
framework that will allow us to test our code in ways we haven't realized yet. Unlike 
past linter tools such as, JSLint, these tests will rely on an application's property 
types, and also on a concept we have yet to cover: unit testing in JavaScript.

In short, we will be covering the following topics:

•	 What is unit testing in JavaScript?
•	 Unit testing with Jasmine



Application Performance Testing

[ 170 ]

What is unit testing in JavaScript?
Unit testing, simply put, is an application framework or toolset designed to test 
JavaScript or the code of any other programming languages in a specific way that's 
unique to any application. Unit tests typically cover error checking that doesn't exist 
inside standard linters. They are designed to check for application-specific errors. In 
other programming languages, unit tests are typically designed to check a project's 
classes and models, and to ensure that applications are running efficiently and 
correctly.

Now JavaScript and unit-testing practices have never been associated well with 
one another, primarily due to the dynamic nature of JavaScript. Some factors that 
hamper their association include the many mistakes created unknowingly by 
developers, passing wrong values to variables that shouldn't have specific variable 
type, assigning a string when an application's object property requires a number,  
and so on.

Moving forward, however, for client-side applications using JavaScript, whether 
they're on the web in a web browser or hosted inside a mobile app's web view, 
testing becomes more and more necessary. Now there are dozens of frameworks out 
there designed for JavaScript testing, but here, I will cover one in particular called 
Jasmine. Keep in mind that there are alternative testing frameworks such as Mocha 
or QUnit, but we will cover Jasmine as it doesn't require third-party frameworks  
to run.

Unit testing with Jasmine
Jasmine is a JavaScript unit-testing framework; it allows us to write JavaScript 
without relying on external libraries such as jQuery. This is helpful for an application 
that requires a very tiny footprint in memory such as our JavaScript application in 
iOS, discussed in Chapter 9, Optimizing JavaScript for iOS Hybrid Apps. It also restricts 
the code to the code we've written, and there's no bug due to a framework in a 
current build of another vendor's library.



Chapter 10

[ 171 ]

Installation and configuration
Jasmine can be installed in various ways; we can use node package manager or NPM 
similar to how we structure our Gulp.js build system in Chapter 3, Understanding 
JavaScript Build Systems. But, to get our feet wet with testing in general, we are going 
to download the standalone version of the framework. I will be using version 2.1.3, 
which is the latest stable release of the framework and can be found at https://
github.com/jasmine/jasmine/releases. To download, click the green .zip file 
button shown here on the Jasmine framework's Github page:

https://github.com/jasmine/jasmine/releases
https://github.com/jasmine/jasmine/releases


Application Performance Testing

[ 172 ]

Once we download the standalone version of Jasmine, we can check to see if it is 
working; the standalone version includes some sample JavaScript that's been set up 
with some unit tests. To run a set of unit tests in Jasmine, we will need to structure 
a SpecRunner page. A SpecRunner is a Jasmine-specific HTML page displaying the 
unit test results. If we open up the standalone versions SpecRunner.html file in our 
browser, we should see the example test results demonstrating all tests that have 
passed, as shown in the following screenshot:

Before setting up a test, we will need to test some code. I've created a bit of JavaScript 
that is object oriented and relies heavily on specific JavaScript types, such as numbers 
and Booleans, which are used throughout the application. The application is a very 
simple banking application that returns customer data to a simple HTML page, but 
it is structured enough to resemble a large application. We are going to use Jasmine 
to check for types, ensure that the data being passed in is valid, and the verify the 
application is outputting customer data as it should.



Chapter 10

[ 173 ]

Reviewing the project code base
We will use the following code sample for the project. Take a moment and look 
through the code shown here. As always, all code samples for this book are available 
on Packt Publishing's website too.



Application Performance Testing

[ 174 ]

We have quite a bit of code here to test, but there's no need to worry about that! 
Let's review this slowly before we start using Jasmine. On lines 1 through 7, we have 
a JavaScript enumeration for a gender type allowing us to predefine values for a 
customer type. In this example, the values are either Male, Female, or Alien. Starting 
on line number 10 is our BankDB object (also considered a JavaScript class); now this 
isn't really a database, but it could very well be connected to one in a real application.

The BankDB function is an instance-based object, meaning it requires a specific 
type of parameter in order for it to function, that we can find on line 56 called 
newCustomer. This JavaScript object contains a JavaScript object notation, which 
assigns values to a new customer entry. Think of this as a bit of JSON being  
returned by a clerk while using the system.

Finally, on lines 66 through 72, we create the request with that user's data, and then 
append the data to the embedded web page's document.body statement with a bit  
of light styling and formatting.

Before we start writing our tests, let's look at this in a self-contained page. I'll add 
this to an empty HTML page just before the closing body tag. Let's open the page  
and look at the results, which resemble the following screenshot:



Chapter 10

[ 175 ]

As we can see, our application is displaying all the correct information except the 
customer's name, which is showing as Mr. e, rather than Mr. Leonard Adams as 
indicated back on line 58 of our 10_01.js file. Also, notice that, in our Chrome 
Developer tools option, we are not receiving any errors, and not really seeing 
much of a performance lag either. Nevertheless, we do know by the output of the 
customer's name that something is wrong. To correct this, we will unit-test our 
application.

Reviewing an application's spec for writing 
tests
When writing unit tests, there need to be well-defined instructions for writing the 
tests; in the case of the code sample shown in the previous screenshot, we want to 
ensure that our tests follow a few rules and, to help us write these tests, we'll use the 
rules listed in the following table with our code.

Consider the following list as an application specification, or documentation based 
on which the application should be built. Let's look at the table and see what our 
code should be doing with the data being used:

Test Number Test Description

Test #1 New Customer data test:
Customer's ID should be a number.

Test #2 New Customer data test:
Customer's name should be in an array object, (ex 
['FirstName', 'LastName']).

Test #3 New Customer data test:
Customer's bank balance should be a number.

Test #4 New Customer data test:
Customer's city name should be a string.

Test #5 New Customer data test:
Customer's gender should be a number.

Test #6 New Customer data test:
Customer's marriage status is a boolean.



Application Performance Testing

[ 176 ]

According to this list, we need our data values to pass these six tests in order to 
ensure that the JavaScript application is working properly. To do this, we will write 
a spec using Jasmine. In the Jasmine framework, a spec file is simply a JavaScript 
file with the JavaScript to be tested loaded into an HTML page that contains both 
the Jasmine testing framework and the file to be tested. Here, we can see what 
that combined page looks like; in Jasmine-based testing, it is typically called a 
SpecRunner page:

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <title>Jasmine Spec Runner v2.1.3</title>

    <link rel="shortcut icon" type="image/png" href="lib/
jasmine-2.1.3/jasmine_favicon.png">
    <link rel="stylesheet" href="lib/jasmine-2.1.3/jasmine.css">

    <script src="lib/jasmine-2.1.3/jasmine.js"></script>
    <script src="lib/jasmine-2.1.3/jasmine-html.js"></script>
    <script src="lib/jasmine-2.1.3/boot.js"></script>

    <!-- include source files here... -->
    <script src="src/Chapter_10_01.js"></script>

    <!-- include spec files here... -->
    <script src="spec/Chapter_10_01Spec.js"></script>

  </head>

  <body>
  </body>
</html>

Here, we can see the SpecRunner.html page and notice that we have the Jasmine 
frameworks loaded first in the head tag, followed by our test script shown earlier in 
the chapter called Chapter_10_01.js, which is then followed by our spec file named 
as Chapter_10_01_Spec.js for consistency.

Note that if, we open our Chrome Developer tools in our SpecRunner.html page, 
we can see a few errors coming from our 10_01.js file where we append the 
document.body statement with our customer data. JavaScript that uses the DOM 
may cause issues with Jasmine and any other JavaScript testing frameworks as well, 
so be sure to use application-specific code to test rather than a user interface code.



Chapter 10

[ 177 ]

Writing tests using Jasmine
In Jasmine, there are three keywords specific to the testing framework that we need 
to know. The first is describe; describe is like a class in testing. It groups our tests 
in one container to be referenced later. In the previous list from our application spec, 
we can use New Customer data test as our describe value.

The second keyword is it; it is a Jasmine function that takes two parameters, a 
string that we use as our test description. For example, one it test could contain 
a description such as Customer's ID should be a number. This tells the user 
reviewing the test what exactly we are testing for. The other parameter is a function 
where we can inject code or set up code if needed. Remember that all of this is being 
run in the same page, so if we would like to change any variables, or prototypes for 
a test, we can do that within this function before we run our test. Keep in mind that, 
while writing the test, we don't need to modify our code in order to test properly; 
this is done only in case we don't have a code sample for review.

The last keyword to remember is expect; expect is a function specific to Jasmine 
that takes a value and compares it with some other value. In Jasmine, this is done 
using the toEqual function that is a part of the expect function. Think of each 
test as readable like this: We expect the typeof newCustomer.customerID to 
equal a number. Now this is pretty simple if we think about it, but what does that 
look like in a spec file? Well, if we look at the following screenshot, we can see our 
Chapter_10_01Spec.js file with each of the tests written ready for Jasmine:



Application Performance Testing

[ 178 ]

Here, we can see how our tests are written; on line 2, we have our describe 
keyword that wraps our tests in a single container should we have a larger test file. 
All our tests from our documentation spec can be found with each it keyword; test 
number 1 is on line 4 and, on line 5, we have the first test's expect keyword checking 
the newCustomers.CustomerID type, where we expect a number.

Note that the type being compared is using a string rather than number, as you 
would expect in a console. This is because typeof, the JavaScript keyword for 
returning the type of a variable or property, returns the type name using a string;  
so, in order to match it, we use strings with the type name here as well.

We can see on subsequent lines that we've added the remaining tests using the 
same style of comparison for each of the other tests. With that done, let's open the 
SpecRunner.html page; we can see how our tests did in the Spec List view in the 
following screenshot:

Yikes! Three errors here, which is not good at all. Here, we were expecting a single 
error with the name of the customer not being displayed properly. But, our unit test 
has discovered that our application spec isn't being followed as it was written. In the 
Jasmine framework, this page layout is pretty common; on initial load, you will see 
a full error list. If you wish to see the list of all the tests that passed and failed, we 
can click Spec List at the top, and we will see the full list as shown in the preceding 
screenshot.



Chapter 10

[ 179 ]

Tests that have failed here show up in red on your browser, and those that have 
passed show up in green. You may also see green circles and red Xs indicating how 
many tests passed and failed in both the Failures view and the Spec List view.

Fixing our code
With our test code working now, we can modify it to ensure this works properly. For 
this, we will need to update the 10_01.js file and the newCustomer data, which is 
on lines 56 through 63 in the 10_01.js file. Let's review what went wrong with our 
sample customer data:

•	 The first test that failed was 2, which required the customer's name to be 
created as an object array, with the first name as an array item followed by 
the last name as the second item in the object array

•	 The second that failed was test 3, which required the customerBalance to be 
a type of number

•	 The third error was test 6, which required the customer's marriage status to 
be a boolean and not a string

Let's update our newCustomer data; you can see that I've done that in the following 
screenshot:



Application Performance Testing

[ 180 ]

Once we've updated the newCustomer information in our 10_01.js file, we should 
be able rerun Jasmine and retest our code sample. If all tests pass, we will see the 
default Spec List showing all results in green; let's reopen our page as shown in the 
following screenshot and see whether our tests pass:

Nice, all six specs have passed! Great work! By ensuring that all our application's 
data is using the correct type, we can also ensure that our JavaScript application is 
not only performing well but also performing with a high degree of accuracy, as it 
was intended to be used.



Chapter 10

[ 181 ]

When applications deviate from the developers, design, they can cause performance 
issues and affect the overall stability of the application. In Jasmine, we can see the 
completion time of the test; note that the performance on the final test is much faster 
than the one with errors. In the following screenshot, we have our final application 
page with no errors, as shown by Developer tools option in Chrome:



Application Performance Testing

[ 182 ]

One final fact to note here is the different approaches that can be used by JavaScript 
developers. One is the Test Driven Development (TDD) approach, where we write 
our tests before writing our application code. Another way in which many JavaScript 
developers test applications is called Behavior Driven Development (BDD) 
approach. This works by writing app code first and then interacting with an app, 
which includes opening a popup and confirming that the code worked as intended.

Both of these are valid methods to build applications, but for JavaScript applications, 
which use a bit of data that must be accurate, TDD is the way to go!

Summary
In this chapter, we covered the basics of unit testing JavaScript applications.  
We introduced Jasmine, a behavior-driven unit-testing framework for JavaScript. 
Together we created a real-world application that had no technical errors but was 
causing application issues.

We reviewed how to read and write an application spec and how to write tests 
in Jasmine using the applications spec. We then ran our test against our code and 
quickly updated our customer data to reflect the spec, allowing our unit test to pass. 
Lastly, we learned that unit-testing our code improves our JavaScript performance, 
and also minimizes risk to our application.



[ 183 ]

Index
A
Apple

URL, for documentation  60
Apple's iOS Developer Center  

documentation
URL  152

array performance  108
array searches

optimizing  109-111
Asynchronous JavaScript and XML  

(AJAX)  114
Audits panel, Chrome's Developer tools

about  78
interacting with  79
suggestions, obtaining for  

JavaScript quality  80

B
Behavior Driven Development (BDD)  182
build system

about  35
code, compiling by example  36
distribution, creating  56, 57
error checking  37, 38
example file, testing  54-56
optimization, adding beyond coding  

standards  38
setting up  47

C
Canary

URL, for downloading  63
Chrome

URL  64

Chrome's Developer tools
about  62, 63
Audits panel  78, 79
Console panel  81, 82
Elements panel  66
Network panel  67-69
overview  64-66
Profile panel  76
Resources panel  77
Sources panel  70
Timeline panel  74, 75

cloud-based editors
about  12
Cloud9 editor  12, 13
Codenvy editor  14

code performance, JavaScript
checking  17

comparison operator
about  84
example  84, 85

compiler  35
console, JSLint  32, 33
Console panel, Chrome's Developer tools

about  81
URL  82

console time API  18-21
console.time() method  21
constructor  95
constructor functions

versus prototypes  107, 108
createElement function

new objects, creating with  115
using  120
working with  115-119

CSS3
used, for animating elements  122, 123



[ 184 ]

D
debugger

about  70
testing  70-73
using  73, 74

Document Object Model (DOM)  113, 114

E
effective editor

selecting  3
elements, animating

about  120-122
CSS3 used  122, 123
unfair performance advantage  124-126

Elements panel, Chrome's Developer  
tools  66

F
Firefox Developer tools  60, 61

G
graphics processing unit (GPU)  126
Grunt.js  47
Grunt Task Runner  48
Gulp

about  48
installing  49, 50
JSLint, integrating into  53, 54
URL, for plugins  49

gulpfile
creating  51

Gulp.js
about  47
used, for creating build system  38

Gulp project
running  52

I
instance functions  98
instances

about  101
creating, with new keyword  101-105

Integrated Development Environments 
(IDEs)

about  4
JetBrain's WebStorm IDE  6, 7
Microsoft Visual Studio IDE  4, 5

Internet Explorer developer tools
about  61, 62
URL  62

Internet Service Provider (ISP)  1
iOS development  149
iOS hybrid development

about  150-152
Safari Web Inspector, using for JavaScript 

performance  158-160
simple iOS hybrid app, setting up  153-158
UIWebView, versus Mobile Safari  161, 162
ways, for improving performance  163-166
WKWebView framework  166, 167

J
Jasmine

about  169, 170
configuring  171, 172
installing  171, 172
unit testing  170
URL, for releases  171
used, for writing tests  177, 178

JavaScript
about  3
code performance, checking  17
Safari Web Inspector, using for  

performance 158-160
unit testing  170

JetBrain's WebStorm IDE  6, 7
jQuery

Node Package Manager (NPM), installing 
with  45-47

JSLint
about  22
console  32, 33
errors, reviewing  26
integrating, into Gulp  53, 54
messy white space, configuring  27-29
URL  23
use strict statement  30, 31
using  24-26



[ 185 ]

L
lightweight editors

about  10
Notepad++ editor  11
Sublime Text editor  10, 11

local server
worker, testing with  140-142

loops
about  86
performance, affecting  86-88
reverse loop performance myth  89-92

M
Microsoft Visual Studio IDE  4, 5
Microsoft WebMatrix editor  9
mid-range editors

about  8
Microsoft WebMatrix editor  9
Panic's Coda editor  8, 9

Mobile Safari
versus UIWebView  161, 162

Model View Controller (MVC)  83
Mozilla's Developer Network

URL  61

N
Network panel, Chrome's  

Developer tools  67-69
new keyword

instances, creating with  101-105
new objects

creating, with createElement function  115
Node.js

about  39-41
installation, testing  41, 42
URL  40

Node Package Manager (NPM)
about  43
installation, checking in Terminal  44
installation, testing  43
jQuery, installing with  45-47
URL  43
using  44, 45

Notepad++ editor  11

O
operators

about  84
comparison operator  84, 85

P
paint events

about  126
checking for  126, 127
testing  128, 129

Panic's Coda editor  8, 9
pesky mouse scrolling events  129-132
Profile panel, Chrome's Developer tools  76
promises

about  96, 142-144
reference link  96
true asynchronous promise, testing  144-146

prototypes
about  98
in terms, of memory  106
versus constructor functions  107, 108

R
Resources panel, Chrome's Developer  

tools  77
reverse loop performance myth  89-92

S
Safari Web Inspector

about  60
using, for JavaScript performance  158-160

scope  102
simple iOS hybrid app

setting up  153-158
Sources panel, Chrome's Developer tools

about  70
debugger  70

spec  176
storyboards  167
Sublime Text editor  10, 11
Swift  153



[ 186 ]

T
Test Driven Development (TDD)  182
tests

writing, Jasmine used  177, 178
this keyword  102
Timeline panel, Chrome's Developer tools

about  74
Loading event  75
Painting event  76
Rendering event  76
Scripting event  76
using  74

timers
about  92
performance, affecting  93, 94
single threading  94-96

U
Uglify

URL  56
UIWebView

about  153
versus Mobile Safari  161, 162

unit testing, in Jasmine
about  170
application's spec for writing tests,  

reviewing  175, 176

code, fixing  179-182
project code base, reviewing  173-175
tests, writing  177, 178

unit testing, in JavaScript  170
use strict statement  30, 31

W
Web Inspectors

about  59
Chrome's Developer tools  62, 63
Firefox Developer tools  60, 61
Internet Explorer developer tools  61, 62
Safari Web Inspector  60

web workers  134-139
WKWebView framework

about  166
URL  167

worker
about  134
testing, with local server  140-142

X
Xcode

about  150
installing  150-152

XIB files  167



Thank you for buying  
Mastering JavaScript High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Learning Object-Oriented 
JavaScript
ISBN: 978-1-78355-433-1              Duration: 02:47 hours

Acquire advanced JavaScript skills and create 
complex and reusable applications

1.	 Discover the important concepts of object-
oriented programming (OOP) and make your 
life easier, more enjoyable, and more focused 
on what you love doing—creating.

2.	 Develop reusable code while creating three 
different clocks, a classic clock, a text clock,  
and an alarm clock.

3.	 Utilize the advantages of using constructors, 
methods, and properties to become an expert.

JavaScript Security
ISBN: 978-1-78398-800-6             Paperback: 112 pages

Learn JavaScript security to make your web 
applications more secure

1.	 Understand the JavaScript security issues 
that are a result of both the frontend and the 
backend of a web app.

2.	 Learn to implement Security techniques to 
avoid cross site forgery and various JavaScript 
vulnerabilities.

3.	 Secure your JavaScript environment  
from the ground up, with step-by-step 
instructions covering all major ways  
to tackle Security issues.

 
Please check www.PacktPub.com for information on our titles



JavaScript Mobile Application 
Development
ISBN: 978-1-78355-417-1            Paperback: 332 pages

Create neat cross-platform mobile apps using Apache 
Cordova and jQuery Mobile

1.	 Configure your Android, iOS, and Window 
Phone 8 development environments.

2.	 Extend the power of Apache Cordova  
by creating your own Apache Cordova  
cross-platform mobile plugins.

3.	 Enhance the quality and the robustness of your 
Apache Cordova mobile application by unit 
testing its logic using Jasmine.

Apache Solr High Performance
ISBN: 978-1-78216-482-1             Paperback: 124 pages

Boost the performance of Solr instances and 
troubleshoot real-time problems

1.	 Achieve high scores by boosting query time 
and index time, implementing boost queries 
and functions using the Dismax query parser 
and formulae.

2.	 Set up and use SolrCloud for distributed 
indexing and searching, and implement 
distributed search using Shards.

3.	 Use GeoSpatial search, handling homophones, 
and ignoring listed words from being indexed 
and searched.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Need for Speed
	Weren't websites always fast?
	Getting faster
	Selecting an effective editor
	Integrated Development Environments
	Mid-range editors
	Lightweight editors
	Cloud-based editors


	Summary

	Chapter 2: Increasing Code Performance with JSLint
	Checking the JavaScript code performance
	About the console time API
	When to use console.time

	What is JavaScript linting?
	About JSLint
	Using JSLint
	Reviewing errors
	Configuring messy white space
	Understanding the use strict statement
	Using console in JSLint

	Summary

	Chapter 3: Understanding JavaScript Build Systems
	What is a build system?
	Compiling code by example
	Error-checking in a JavaScript build system
	Adding optimization beyond coding standards
	Creating a build system from scratch using Gulp.js
	Node.js


	Setting up our build system
	About Grunt.js and Gulp.js
	Grunt Task Runner
	About Gulp

	Integrating JSLint into Gulp
	Testing our example file
	Creating a distribution

	Summary

	Chapter 4: Detecting Performance
	Web Inspectors in general
	The Safari Web Inspector
	Firefox Developer tools
	Internet Explorer developer tools
	Chrome's Developer tools
	Getting familiar with Chrome's Developer tools


	Summary

	Chapter 5: Operators, Loops, and Timers
	Operators
	The comparison operator
	Is strict faster?


	Loops
	How loops affect performance
	The reverse loop performance myth

	Timers
	What are timers and how do they affect performance?
	Working around single-threading
	Closing the loop


	Summary

	Chapter 6: Constructors, Prototypes, and Arrays
	Building with constructors and instance functions
	A quick word
	The care and feeding of function names
	Understanding instances
	Creating instances with 'new'


	Alternate constructor functions using prototypes
	Understanding prototypes in terms of memory
	Which is faster, a prototype or a constructor function?

	Array performance
	Optimizing array searches

	Summary

	Chapter 7: Hands off the DOM
	Why worry about the DOM?
	Don't we need an MV-whatever library?
	Creating new objects using the createElement function
	Working around the createElement function
	Working with the createElement function
	When to use the createElement function?

	Animating elements
	Animating the old-fashioned way
	Animating using CSS3
	An unfair performance advantage

	Understanding paint events
	How to check for paint events?
	Testing paint events

	Pesky mouse scrolling events
	Summary

	Chapter 8: Web Workers and Promises
	Understanding the limitations first
	Web workers
	Testing workers with a local server

	Promises
	Testing a true asynchronous promise

	Summary

	Chapter 9: Optimizing JavaScript for iOS Hybrid Apps
	Getting ready for iOS development
	iOS hybrid development
	Setting up a simple iOS hybrid app
	Using Safari Web Inspector for JavaScript performance
	Comparing UIWebView with Mobile Safari
	Common ways to improve hybrid performance
	The WKWebView framework

	Summary

	Chapter 10: Application Performance Testing
	What is unit testing in JavaScript?
	Unit testing with Jasmine
	Installation and configuration
	Reviewing the project code base
	Reviewing an application's spec for writing tests
	Writing tests using Jasmine
	Fixing our code

	Summary

	Index



